Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Квантовый компьютер.docx
Скачиваний:
14
Добавлен:
22.02.2016
Размер:
266.44 Кб
Скачать

Практическое применение квантовых компьютеров

Для практического применения пока не создано ни одного квантового компьютера, который бы удовлетворял всем вышеперечисленным условиям. Однако во многих развитых странах разработке квантовых компьютеров уделяется пристальное внимание и в такие программы ежегодно вкладываются десятки миллионов долларов.

На данный момент наибольший квантовый компьютер составлен всего из семи кубитов. Этого достаточно, чтобы реализовать алгоритм Шора и разложить число 15 на простые множители 3 и 5.

Если же говорить о возможных моделях квантовых компьютеров, то их, в принципе, довольно много. Первый квантовый компьютер, который был создан на практике, — это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения, хотя он, конечно же, как квантовый компьютер не рассматривался. Лишь когда появилась концепция квантового компьютера, ученые поняли, что ЯМР-спектрометр представляет собой вариант квантового компьютера.

В ЯМР-спектрометре спины ядер исследуемой молекулы образуют кубиты. Каждое ядро имеет свою частоту резонанса в данном магнитном поле. При воздействии импульсом на ядро на его резонансной частоте оно начинает эволюционировать, остальные же ядра не испытывают никакого воздействия. Для того чтобы заставить эволюционировать другое ядро, нужно взять иную резонансную частоту и дать импульс на ней. Таким образом, импульсное воздействие на ядра на резонансной частоте представляет собой селективное воздействие на кубиты. При этом в молекуле есть прямая связь между спинами, поэтому она является идеальной заготовкой для квантового компьютера, а сам спектрометр представляет собой квантовый процессор.

Первые эксперименты на ядерных спинах двух атомов водорода в молекулах 2,3-дибромотиофена SCH:(CBr)2:CH и на трех ядерных спинах — одном в атоме водорода H и двух в изотопах углерода C в молекулах трихлорэтилена CCl2:CHCl — были поставлены в 1997 году в Оксфорде (Великобритания).

В случае использования ЯМР-спектрометра важно, что для селективного воздействия на ядерные спины молекулы необходимо, чтобы они заметно различались по резонансным частотам. Позднее были осуществлены квантовые операции в ЯМР-спектрометре с числом кубитов 3, 5, 6 и 7.

Главным преимуществом ЯМР-спектрометра является то, что в нем можно использовать огромное количество одинаковых молекул. При этом каждая молекула (точнее, ядра атомов, из которых она состоит) представляет собой квантовую систему. Последовательности радиочастотных импульсов, выполняющие роль определенных квантовых логических вентилей, осуществляют унитарные преобразования состояний соответствующих ядерных спинов одновременно для всех молекул. То есть селективное воздействие на отдельный кубит заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого (bulk-ensemble quantum computer) ЯМР квантового компьютера. Такие компьютеры могут работать при комнатной температуре, а время декогерентизации квантовых состояний ядерных спинов составляет несколько секунд.

В области ЯМР квантовых компьютеров на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они обусловлены в основном хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов, и возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатной температуре.

Основным ограничением ЯМР квантовых компьютеров является сложность инициализации начального состояния в квантовом регистре. Дело в том, что в большом ансамбле молекул исходное состояние кубитов различно, что осложняет приведение системы к начальному состоянию.

Другое ограничение ЯМР квантовых компьютеров связано с тем, что измеряемый на выходе системы сигнал экспоненциально убывает с ростом числа кубитовL. Кроме того, число ядерных кубитов в отдельной молекуле с сильно различающимися резонансными частотами ограничено. Это приводит к тому, что ЯМР квантовые компьютеры не могут иметь больше десяти кубитов. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.

Другой вариант квантового компьютера основан на использовании ионных ловушек, когда в роли кубитов выступает уровень энергии ионов, захваченных ионными ловушками, которые создаются в вакууме определенной конфигурацией электрического поля в условиях лазерного охлаждения их до сверхнизких температур. Первый прототип квантового компьютера, основанного на этом принципе, был предложен в 1995 году. Возможны и другие схемы квантовых компьютеров, разработка которых ведется в настоящее время. Однако пройдет еще как минимум десять лет, прежде чем настоящие квантовые компьютеры, наконец, будут созданы.

Квантовые компьютеры на сверхпроводящих фазовых кубитах

Понятия запутанности и суперпозиции введенные квантовой механикой дают возможность разрабатывать новую вычислительную архитектуру, называемую квантовым компьютером, который может экспоненциально превзойти любые возможные классические компьютеры. Такое повышение производительности сделает неразрешимые в настоящее время вычислительные задачи в достаточной степени разрешимыми. Такие проблемы включают в себя оптимизацию задачи коммивояжера, факторизацию и квантовые симуляторы, например, для медицинских исследований. Один из подходов к реализации квантового компьютера реализуется на основе сверхпроводящих фазовых джозефсоновских кубитов. Эксперименты показывают нарушение неравенства Белла при использовании этих кубитов (квантовых битов), т. е. показывают, что пара таких кубитов может быть помещена в состояние, которое показывает более сильные корреляции, чем это возможно для классической пары битов. Эти эксперименты являются значительной вехой для сверхпроводящих кубитов, поскольку они обеспечивают убедительные доказательства того, что архитектура квантовых компьютеров действительно сможет превзойти классическую систему. Кроме того, эти эксперименты демонстрируют первые нарушения неравенства Белла в системах в твердом состоянии и макроскопических квантовых системах. Поэтому они добавляют ценные свидетельства того, что новые идеи, предложенные квантовой механикой, действительны во всевозможных квантовых системах и не могут быть объяснены детерминистическими альтернативными теориями.

В 20-м веке информатизация труда выросла на порядок [Graham T.T. Molitor, 1982]. Это стало возможным с появлением персональных компьютеров и все более широким распространением и доступностью систем хранения и обмена информацией, таких как магнитные жесткие диски и Интернет. Экспоненциальный рост производительности труда и снижение цен на устройства сбора и создания информации привел к информационному потопу, что, по прогнозам, приведет к удвоению информационной базы в мире каждые несколько часов [Coles et al., 2006]. Чтобы справиться с этим потоком информации достаточно резко увеличить скорость обработки информации. За последние 40 лет производительность вычислительных устройств удваивалась, примерно, каждые 18 месяцев. Эту тенденцию обычно называют законом Мура из-за статьи, написанной в 1965 году соучредителем Intel Гордоном Муром [Moore,1965]. Несмотря на то, что закон Мура, как ожидается, будет действовать, по крайней мере, еще десятилетия, важно подготовиться в более долгосрочной перспективе к будущему, когда транзисторы на основе кремния будут вытеснены.

Тезис Черча-Тьюринга

Тезис Черча-Тьюринга делает это еще более насущным. Тезис Чёрча — Тьюринга — фундаментальное эвристическое утверждение, существенное для многих областей науки, в том числе, для математической логики теории доказательств, информатики, кибернетики, дающее интуитивное понятие о вычислимости. Это утверждение было высказано Алонзо Чёрчем и Аланом Тьюрингом в середине 1930-х годов. В терминах теории рекурсии, это утверждение формулируется как совпадение классов вычислимых и частично рекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу, тезис гласит, что для любой интуитивно вычислимой функции существует вычисляющая её значения машина Тьюринга. Иногда в такой формулировке тезис Чёрча — Тьюринга фигурирует как тезис Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга. Тезис Чёрча — Тьюринга невозможно строго доказать или опровергнуть, поскольку он устанавливает эквивалентность между строго формализованным понятием частично вычислимой функции и неформальным понятием вычислимости. Позднее были сформулированы другие практические варианты утверждения: физический тезис Чёрча — Тьюринга: любая функция, которая может быть вычислена физическим устройством, может быть вычислена машиной Тьюринга. Проблемы, которые являются неразрешимыми, не разрешимы за полиномиальное время на современных компьютерах и останутся неразрешимыми на всех будущих классических компьютерах. К примерам таких проблем относятся факторизация, оптимизация путешествия коммивояжера, задача о скрытых подгруппах и т.д.

Алгоритм Deutsch-Josza

В 1992г. D. Deutsch и R. Jozsa предложили гипотетическую проблему, а также алгоритм ее решения, который показывает, что компьютер, который использует квантовые состояния для вычислений мог бы не подчиняться ограничению, наложенному тезисом Черча-Тьюринга [Deutsch и Jozsa, 1992]. Проблема – определение природы неизвестной функции вопросами оракулу, который оценивает функцию для данного входа. Функция действует на число n- битное и, как известно, результат или постоянный, то есть 0 (или 1) для всех возможных входов, или уравновешенный, то есть возвращается 0 для точно половины всех возможных входов и 1 для всех других. Классический компьютер, в худшем случае, должен был бы оценить функцию 2 в степени (n-1) + 1 раз, в то время как квантовый компьютер должен будет оценить функцию только однажды, чтобы определить с уверенностью результат будет уравновешен или постоянен. Это сделано одной оценкой значения функции, если состояние на входе представляет собой суперпозицию всех возможных 2 в степени n состояний, получаемых применением оператора Адамара. Если на выходе результат показывает амплитуды и для 0, и для 1, то функция уравновешена (сбалансирована), в противном случае - постоянна. Этот алгоритм подразумевает, что квантовый компьютер мог бы быть бесконечно быстрее, чем любой возможный классический компьютер для определенных классов проблем, которые слишком тяжелы для классических компьютеров.