Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ПАПП_II часть.doc
Скачиваний:
113
Добавлен:
21.02.2016
Размер:
3.79 Mб
Скачать

Кипятильник

Задание.

Рассчитать кипятильник ректификационной колонны для испарения 50 т/ч бензола при атмосферном давлении (концентрацией другого компонента, как и для дефлегматора, пренебрегаем).

Принимаем вертикальный одноходовой кожухотрубный теплообменник, обогреваемый греющим паром. Схема аппарата представлена на рис.97.

Рис.97. Схема вертикального кожухотрубного кипятильника.

1-греющий пар, 2-конденсат водяного пара, 3-бензол, 4-парожидкостная смесь бензола.

Физические свойства теплоносителей.

1. Водяной пар.

Давление принимаем 0.2 МПа, температура конденсации ,теплота конденсации .

Свойства конденсата (воды): плотность , теплопроводность, вязкость.

2. Бензол.

Давление 0.1 МПа, температура кипения , теплота парообразования.

Расчёты.

1. Тепловая нагрузка аппарата.

Принимаем потери тепла . Тогда тепло, вносимое греющим паром:

Расход греющего пара

2. Средняя разность температур.

3. Расчётный коэффициент теплопередачи.

Из условия , или:

,

где ,; для бензола.

После несложных алгебраических преобразований (метод Н.И. Гельперина) получаем равенство:

Обозначим: а = , в =

Принимаем Н=2 м, мм, материал – углеродистая сталь (). Рассчитываем:

; ;.

Принимаем несколько значений ''К'' и расчёты величин ''а'' и ''в'' сводим в таблицу 5.

Таблица 5. Значения расчётных величин ''а'' и ''в''.

Величины

Коэффициент теплопередачи

К=1000

К=2000

''а''

0.881

0.7

''в''

1.02

1.488

Данные таблицы 5 переносятся на график, представленный на рис.98.

Рис.98. Зависимость величин ''а'' и ''в'' от коэффициента теплопередачи.

Из графика, когда ''а''=''в'', определяется .

4. Поверхность теплопередачи.

По каталогу (Теплотехнический справочник, т.2, с.539) принимаем теплообменник:

F=161 м2,

Н=2 м,

число трубок =703,

D=1400 мм,

мм.

Выпаривание

Сущность выпаривания заключается в доведении раствора твердого нелетучего вещества до температуры кипения, в переводе части растворителя в парообразное состояние и отводе полученного пара от оставшегося сконцентрированного раствора.

Более кратко: концентрирование растворов твердых нелетучих веществ при температуре кипения растворов.

Выпаривание - тепловой процесс, осуществляемый путем подвода тепловой энергии.

Источники тепловой энергии (горячие теплоносители):

1. Газовый обогрев,

а) непосредственный (погружные горелки),

б) через стенку (рекуперативный).

2. Обогрев ВОТ (высокотемпературные органические теплоносители), например, дифенильной смесью /до 400 °С/.

3. Водяным паром, который носит название греющего или первичного.

Пар, которой образуется при выпаривании кипящего раствора, носит название "вторичный".

Если вторичный пар используется для нужд вне выпарной установки, то он называется "экстра-паром".

Выпаривание очень широко применяется в пищевой промышленности, например, производство сахара, поваренной соли, соды и др.

Научный анализ процессов выпаривания был выполнен впервые в 1915 г. проф. Иваном Александровичем Тищенко в монографии "Современные выпарные аппараты и их расчет". Разработанный им метод расчета получил название - метод Тищенко. В настоящее время существует примерно 15 методов расчета выпарных установок, которые развивают и дополняют метод Тищенко.