Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
проектирование зданий / лекция 3-конструкт системы.doc
Скачиваний:
772
Добавлен:
21.02.2016
Размер:
6.35 Mб
Скачать

2 Конструктивный тип зданий.

Конструктивный тип зданий представляет собой вариант конструктивной системы по признаку вида вертикальных несущих конструкций.

Различают следующие виды вертикальных несущих конструкций:

- стержневые (колонны каркаса);

- плоскостные (стены);

- объемно-пространственные (объемные блоки);

- объемно-пространственные внутренние несущие конструкции на высоту здания в виде тонкостенных стержней открытого или замкнутого профиля (стали жесткости), который располагают обычно в центре здания;

- объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующий одновременно и наружную ограждающую конструкцию здания.

Классификация конструктивных типов зданий (основных и комбинированных) приведены на рис. 3.5.

Рис. 3.5 Классификация конструктивных типов зданий.

Основные и комбинированные конструктивные типы зданий приведены на рис. 3.6 и рис. 3.7.

Горизонтальные несущие конструкции (перекрытия) зданий, как правило, однотипные и представляют собой жесткий диск (сборный, монолитный или сборно-монолитный).

Рис. 3.6 Основные конструктивные типы зданий

а - каркасный; б - стеновой; в – объемно-блочный; г - ствольный; д – оболочковый.

Рис. 3.7 Комбинированные конструктивные типы зданий

а – с неполным каркасом; б – каркасно-диафрагмовый; в – каркасно-ствольный; г – каркасно-блочный; д – блочно-стеновой; е – ствольно-стеновой; ж – оболочково-стволовой; и – каркасно-оболочковый.

В комбинированном каркасно-стеновом конструктивном типе здания (неполный каркас) несущие стены расположены по периметру, а внутри здания – колонны каркаса. Возможно обратное расположение стен и колонн. Здание может иметь смешанную конструктивную систему, когда, например, каркас расположен в пределах нижних 1-2 этажей, а выше стеновая конструктивная система.

3 Конструктивные схемы зданий.

Конструктивная схема представляет собой вариант конструктивного типа здания по признакам состава и размещения в пространстве основных несущих конструкций – продольному, поперечному или др., также по характеру статистической работы (тип соединения основных конструкций между собой). Классификация конструктивных схем зданий приведена на рис. 3.8.

Рис. 3.8 Основные конструктивные схемы зданий.

Рис. 3.9 Стеновые конструктивные схемы зданий

1 – перекрестно-стеновая; ІІ и III – поперечно-стеновые; IV и V – продольно-стеновые; А – варианты с несущими или самонесущими продольными наружными стенами; Б – то же, с несущими; а – план стен; б – план перекрытий.

При стеновой конструктивной системе зданий применяют 5 конструктивных схем (рис. 3.9).

Перекрестно-стеновая схема (рис. 3.9 І) характеризуется малыми размерами помещений (до 20м2), ее применяют, в основном, для многоэтажных панельных жилых зданий со сплошными железобетонными плитами перекрытий, опертыми по контуру.

Схемы с поперечными несущими стенами со смешанным шагом (чередующиеся с большим (более 4,8м), малым (менее 4,5м)) и большим шагом (рис. 3.9 ІІ и III) позволяют более разнообразно решать планировку жилых зданий, размещать встроенные нежилые помещения в первых этажах, обеспечивают удовлетворительные планировочные решения школ и детских учреждений.

Продольно-стеновая схема (рис. 3.9 IV) традиционно применяется при проектировании гражданских зданий различной этажности с каменными и крупноблочными конструкциями. Она обеспечивает свободу планировочных решений в зданиях.

Схема с продольными наружными несущими стенами (рис. 3.9 V) применяется в жилых 9-10-этажных зданиях. Она обеспечивает максимальную свободу планировки и многократной трансформации планировочных решений в течение срока эксплуатации здания.

В каркасных зданиях горизонтальные и вертикальные элементы, соединенные между собой в поперечном и продольном направлениях, образуют конструкции, называемые рамами. Соединение элементов в раме может быть шарнирным и жестким. При шарнирном соединении балки со стойкой изгибающие усилия, возникающие в балке, на стойку не передаются, так как она может повернуться (рис. 3.1,е). Жесткое соединение балки со стойкой позволяет передавать на стойку не только сжимающие, но и изгибающие усилия и поперечные силы (рис. 3.1,ж). Рамы могут быть одноярусными или многоярусными, однопролетными и многопролетными.

Таким образом, существуют два способа обеспечения жесткости плоских систем – по рамной и по связевой схемам. Комбинируя ими при расположении элементов несущего остова в обоих направлениях здания, можно получить три варианта пространственных конструктивных схем здания: рамную, рамно-связевую, связевую. В третьем направлении – горизонтальном – перекрытия обычно рассматриваются как жесткие диафрагмы. Все эти варианты встречаются при проектировании каркасного несущего острова (рис. 3.10).

Рис. 3.10 Конструктивные схемы каркасов:

а - рамная; б – рамно-связевая; в - связевая; 1 - колонна; 2 - ригель; 3 – жесткий диск перекрытия; 4 – диафрагма жесткости.

Рамная схема представляет собой систему плоских рам (одно- и многопролетных; одно- и многоэтажных), расположенных в двух взаимно перпендикулярных (или под другим углом) направлениях – систему стоек и ригелей, соединенных жесткими узлами при их сопряжениях в любом из направлений.

Рамно-связевая схема решается в виде системы плоских рам, шарнирно соединенных в другом направлении элементами междуэтажных перекрытий. Для обеспечения жесткости в этом направлении ставятся решетчатые связи или стенки (диафрагмы) жесткости. Плоские рамы удобнее устанавливать поперек здания.

Связевая схема решения каркаса здания наиболее проста в осуществлении. Решетчатые связи, или диафрагмы жесткости, вставляемые между колоннами, устанавливаются через 24…30м, но не более 48м и в продольном, и в поперечном направлениях; обычно эти места совпадают со стенами лестничных клеток.

Рамная схема применяется сравнительно редко. Трудоемкость построечных работ по обеспечению жесткости узлов, повышенный расход стали и т.п. ограничивают их применение в сейсмических районах, зданиях, в которых на большом протяжении (48-54м) не допускается установка стен, перегородок и других преград и т.п. Чаще, особенно в производственных зданиях, применяют рамно-связевую схему.

Связевая схема оправдывает свое широкое применение большей простотой построечных работ, меньшими затратами труда и материалов и т.п.

При стеновом несущем остове и при различных системах остовов с неполным каркасом обычно применяют связевую схему; при этом наружные или внутренние стены выполняют функции диафрагмы или ядер жесткости, т.е. не требуется установка дополнительных стен.

В каркасных зданиях вторым определяющим признаком конструктивной схемы является расположение ригелей. Различают 4 конструктивных схемы с поперечными, продольными или перекрестными ригелями и безригельную (рис. 3.11).

Рис. 3.11 Конструктивные схемы каркасных зданий:

а – с продольным расположением ригелей; б – с поперечным расположением ригелей; в – с перекрестным расположением ригелей; г – безригельная.

При выборе конструктивной схемы каркаса учитывают экономические и архитектурные требования: элементы каркаса не должны связывать планировочное решение; ригели каркаса не должны пересекать поверхность потолка в жилых комнатах и т.д. В связи с этим каркас с поперечным расположением ригелей применяют в многоэтажных зданиях с регулярной планировочной структурой (общежития, гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.

Каркас с продольным расположением ригелей применяют в жилых домах квартирного типа и массовых общественных зданиях сложной планировочной структуры, например, в зданиях школ.

Безригельный (безбалочный) каркас, в основном, используют в многоэтажных промышленных зданиях, реже в общественных и в жилых, в связи с отсутствием соответствующей производственной базы в сборном жилищном строительстве и относительно малой экономичностью такой схемы. В то же время благодаря отсутствию ригелей эта схема среди каркасных в архитектурно-планировочном отношении – наиболее благоприятная. Преимущество безригельного каркаса используется в жилых и общественных зданиях при их возведении в сборно-монолитных конструкциях методом подъема перекрытий или этажей.

В зданиях объемно-блочного конструктивного типа классификационным признаком является расположение в пространстве объемных блоков и способ их опирания (линейный по контуру, линейный по двум противоположным сторонам или точечный в углах), который определяет характер статической работы здания.

Классификация основных конструктивных схем зданий объемно-блочного конструктивного типа приведена на рис. 3.9, а схемы зданий из объемных блоков на рис. 3.12.

Рис. 3.12 Основные конструктивные схемы зданий из объемных блоков:

а – с рядовым расположением блоков; б – со смещением блоков по продольной оси; в – со смещением блоков по двум осям; г – со смещением блоков по вертикали; 1 – объемные блоки.

Рис. 3.13 Конструктивная схема с монолитным стволом, поддерживающим на консолях панельные конструкции. План и разрез (панельные конструкции на разрезе условно не показаны). 1 – монолитный железобетонный ствол; 2 – консоль; 3 – фундамент; 4 – несущие поперечные панели; 5 – навесные наружные панели.

Конструктивная схема с консольными платформами здания стволового конструктивной системы приведена на рис. 3.13.

Наряду с основными, широко применяются и комбинированные конструктивные системы и схемы зданий. В этих схемах вертикальные несущие конструкции компонуются с различных несущих элементов: стен и колонн каркаса (с неполным каркасом), стен и объемных блоков и т.п.