
- •Тема 1. Фізичні основи механіки. Кінематика Лекція 1. Основи кінематики поступального та обертального рухів Основні визначення
- •Швидкість і прискорення
- •Кінематика обертального руху
- •Лекція 2. Основи динаміки матеріальної точки та абсолютно твердого тіла Перший закон Ньютона.
- •Сила. Маса. Другий закон Ньютона.
- •Третій закон Ньютона.
- •Сили тертя
- •Сили пружності. Закон Гука.
- •Імпульс. Закон збереження імпульсу
- •Реактивний рух
- •Момент імпульсу. Закон збереження моменту імпульсу
- •Обертальний рух матеріальної точки відносно нерухомої осі
- •Теорема Штейнера (Гюйгенса)
- •Лекція 3. Робота. Енергія. Потужність
- •Робота при обертальному русі.
- •Закони збереження енергії в механіці
- •Потужність
- •Електростатичне поле та його характеристики
- •1. Електричний заряд. Закон збереження електричного заряду замкненої системи
- •2. Закон Кулона
- •3. Електростатичне поле та його напруженість. Лінії напруженості поля
- •4. Робота сил електростатичного поля по переміщенню точкового заряду
- •5. Потенціал електростатичного поля
- •6. Різниця потенціалів. Принцип суперпозиції електростатичних полів
- •7. Еквіпотенциальні поверхні
- •Лекція 05 Теорема Остроградського-Гаусса
- •Теорема Остроградського-Гауса для електростатичного поля у вакуумі
- •1. Поле рівномірно зарядженої нескінченної площини
- •2. Поле рівномірно зарядженої сферичної поверхні
- •3. Поле об'ємно зарядженої кулі
- •4. Поле рівномірно зарядженого нескінченного циліндра (нитки)
- •2. Поляризація діелектриків. Вектор поляризації
- •3. Лінії електричного зміщення і потік електричного зміщення.
- •Потік електричного зміщення для замкненої поверхні
- •4. Теорема Остроградського-Гаусса для електростатичного поля в діелектриці
- •5. Сегнетоелектрики, їх властивості та використання
- •Провідники в електричному полі
- •Електростатична індукція
- •Електрична ємність відокремленого (самотнього) провідника
- •Конденсатори, їх типи та ємність
- •Лекція 08 Постійний електричний струм
- •1. Електричний струм та його характеристики (сила, густина струму).
- •Умови існування електричного струму
- •Сторонні сили. Електрорушійна сила і напруга
- •Закон Ома
- •Опір і провідність провідників
- •Робота та потужність електричного струму
- •Правила Кірхгофа для розгалужених кіл
- •Під час розрахунку складних кіл із застосуванням правил Кірхгофа необхідно:
- •Лекція 09. Магнітне поле постійного струму Загальний опис магнітного поля
- •2. Потік вектора магнітної індукції. Теорема Остроградського-Гаусса для поля в
- •Магнітний потік крізь довільну поверхню s
- •3. Закон Біо-Савара-Лапласа та приклади його застосування (визначення індукції магнітного поля прямолінійного провідника зі струмом і магнітне поле в центрі кругового струму)
- •4. Теорема про циркуляцію векторів магнітної індукції та напруженості магнітного поля
- •Дія магнітного поля на рухомі заряди
- •1. Магнітне поле рухомого заряду
- •2. Дія магнітного поля на рухомий заряд. Сила Лоренца
- •3. Рух зарядженої частинки в магнітному полі
- •4. Формула Ампера
- •Робота по переміщенню контуру із струмом. Робота dА сил Ампера при даному переміщенні контуру (рис. 10.7) дорівнює сумі робіт по переміщенню провідників авс (dА1) і cda (dА2), тобто
- •Магнітне поле в речовині
- •1. Магнітний момент електрона і атома
- •2. Типи магнетиків
- •Намагніченість. Магнітне поле в речовині Намагніченість – це фізична величина, яка визначається магнітним моментом одиниці об'єму магнетика:
- •Феромагнетики та їх властивості Феромагнетики
- •1. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца Досліди Фарадея і наслідки з них.
- •Індуктивність нескінченно довгого соленоїда. Соленоїд – це згорнутий в спіраль ізольований провідник, по якому протікає електричний струм. Повний магнітний потік соленоїда (потокозчеплення)
- •4. Енергія та об'ємна густина енергії магнітного поля
- •1. Коливання та їх типи
- •2. Механічні вільні гармонічні коливання, їх диференціальне рівняння та розв'язок
- •3. Енергія гармонічних коливань
- •Кінетична енергія
- •4. Електричний коливальний контур. Диференціальне рівняння власних електричних коливань та його розв'язок
- •Додавання гармонічних коливань
- •1. Метод векторних діаграм
- •2. Додавання гармонічних коливань одного напрямку
- •3. Биття
- •4. Додавання взаємно перпендикулярних гармонічних коливань. Поняття про фігури Ліссажу
- •Згасаючі коливання
- •1. Згасаючі механічні коливання
- •Енергія гармонічних коливань
- •Вимушені коливання
- •3. Вимушені електромагнітні коливання, диференціальне рівняння і його розв'язок і характеристики
- •4. Електричний резонанс і його використання в техніці
- •Резонанс напруг – це явище різкого зростання амплітуди сили струму в контурі при збігу циклічної частоти зовнішньої змінної напруги з власною частотою 0 коливального контура.
- •Пружні хвилі
- •1. Хвильовий процес. Види хвиль. Хвильова поверхня, фронт хвилі. Промінь
- •2. Гармонічна хвиля та її характеристики
- •3. Принцип Гюйгенса
- •4. Рівняння плоскої та сферичної хвиль
- •4. Хвильове рівняння пружної хвилі
- •Рівняння Максвелла
- •1. Аналіз явища електромагнітної індукції. Вихрове електричне поле. Циркуляція вектора напруженості вихрового електричного поля
- •2. Струм зміщення. Закон повного струму. Друге рівняння Максвелла
- •3. Система рівнянь Максвелла для електромагнітного поля в інтегральній формі. Електромагнітне поле
- •4. Вихрові струми (струми Фуко). Скін-ефект
- •2. Диференціальне рівняння електромагнітної хвилі та його дослідження
- •3. Енергія електромагнітних хвиль (об'ємна густина, потік, вектор Умова-Пойнтінга)
- •4. Тиск електромагнітних хвиль. Імпульс електромагнітного поля
- •5. Шкала електромагнітних хвиль
- •Лекція 19 Інтерференція хвиль
- •3. Стоячі хвилі
- •Лекція 20 Дифракція хвиль
- •1. Закони геометричної оптики. Дифракція світла. Принцип Гюйгенса- Френеля
- •2. Дифракція в паралельних променях на щілині
- •Квантова теорія теплового випромінювання
- •1. Теплове випромінювання, його рівноважність, характеристики
- •По спектральній густині енергетичної світимості можна розрахувати інтегральну енергетичну світимість, підсумувавши по всіх частотах:
- •2. Абсолютно чорне тіло. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закони Кірхгофа і Стефана-Больцмана
- •3. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закон зміщення Віна
- •4. Квантова гіпотеза Планка. Формула Планка
- •Квантова теорія атома водню. Розвиток теорії Бора. Атоми із багатьма електронами
- •1. Спектр випромінювання атома водню. Серіальна формула
- •2. Постулати Бора. Борівська теорія атома водню
- •Набір можливих дискретних частот
- •3. Квантово-механічний опис атома водню
- •4. Квантові числа: головне, орбітальне і магнітне квантові числа. Правила відбору
- •5. Орбітальні механічний та магнітний моменти електрона
- •6. Спін електрона. Спінове квантове число
- •7. Принцип Паулі. Розподіл електронів в атомі за станами. Характерні квантові числа
- •Розподіл електронів в атомі підпорядковується принципу Паулі: в одному і тому ж самому атомі не може бути більше одного електрона з однаковим набором чотирьох квантових чисел n, l, ml I mz , тобто
- •Лекція 24 Хвильові властивості мікрочастинок
- •2. Деякі властивості хвиль де Бройля
- •Фазова швидкість фотона
- •3. Співвідношення невизначеностей Гейзенберга
- •4. Хвильова функція, її статистичний зміст та властивості. Статистичний (ймовірнісний) опис мікрочастинок за допомогою хвильової функції
- •Лекція 25 Рівняння Шредінгера та його застосування
- •1. Головне рівняння нерелятивістської квантової механіки
- •2. Стаціонарне рівняння Шредінгера
- •3. Рух вільної частинки
- •4. Мікрочастинка в одновимірній прямокутній "потенційній ямі" з нескінченно високими "стінками"
- •Власні функції:
- •Нормовані власні функції:
- •5. Проходження частинки через потенціальний бар'єр прямокутної форми. Тунельний ефект
- •Лекція 26 Зонна теорія твердих тіл
- •1. Кристалічні і аморфні тверді тіла. Кристалічна гратка
- •Характерною ознакою кристалічних тіл є кристалічні гратки.
- •3. Квантова теорія електропровідності металів
- •Напівпровідники
- •3. Зонна структура металів, діелектриків та напівпровідників
- •Валентна зона – це зона, повністю заповнена електронами. Утворюється з енергетичних рівнів внутрішніх електронів вільних атомів.
- •2. Функція розподілу Бозе – Ейнштейна
- •3. Функція розподілу Фермі – Дірака Ця функція визначається аналогічно функція розподілу Бозе – Ейнштейна і має такий вид:
- •4. Поняття про виродження систем частинок, що описуються квантовими статистиками
- •5. Поняття про виродження електронного газу в металах
- •Електропровідність металів
- •1. Класична теорія електропровідності металів
- •Виведення закону Ома
- •Закон Джоуля-Ленца
- •Закон Відемана-Франца
- •Труднощі класичної теорії
- •2. Квантова теорія електропровідності металів
- •Напівпровідники
- •Лекція 29 Власні напівпровідники
- •1. Власна провідність напівпровідників
- •2. Електронна домішкова провідність (провідність n-типу)
- •3. Діркова домішкова провідність (провідність р-типу)
- •4. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
- •1. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2.2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •2.3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •2.4. Напівпровідникові тріоди (транзистори)
- •Контактні явища в металах
- •1. Робота виходу електронів з металу у вакуум
- •2. Контакт двох металів по зонній теорії, контактна різниця потенціалів
- •3. Термоелектричні явища: Зеєбека, Пельтьє, Томсона та їх використання
- •Контакт електронного і діркового напівпровідників (р-п-перехід)
- •1. Електронно-дірковий перехід (р-п-перехід)
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
Провідники в електричному полі
1. Напруженість поля всередині провідника. Різні тіла ведуть себе по різному в зовнішньому електричному полі: в діелектриках заряджені частинки перебувають у зв'язаному стані і тому під дією електричного поля відбувається лише їх невелике зміщення; в провідниках (металах, електронних напівпровідниках, електролітах, іонізованих газах) заряджені частинки під дією зовнішнього поля можуть вільно переміщуватись. Рух заряджених частинок провідника, внесеного в постійне зовнішнє електростатичне поле, яке створюється сторонніми нерухомими зарядами, викличе появу струму. Проте цей рух має обов'язково припинитись, оскільки провідник, поміщений в електричне поле, можна було б використати для побудови вічного двигуна першого роду. Дійсно, це неможливо, оскільки в противному разі в провіднику виник би упорядкований рух зарядів без затрати енергії від зовнішнього джерела, що протирічить закону збереження енергії.
Рух зарядів в провіднику відбуватиметься лише протягом дуже короткого часу, а саме: доти, доки не встановиться рівновісний розподіл зарядів, за якого електростатичне поле всередині провідника перетвориться в нуль. Таким чином, напруженість електричного поля у всіх точках всередині провідника дорівнює нулю:
Заряди розміщуються лише на поверхні провідника.
2.
Еквіпотенціальність
провідника. Оскільки
всередині провідника
,
то це означає, що потенціал у всіх точках
всередині провідника постійний (
),
тобтоповерхня
провідника в електростатичному полі є
еквіпотенціальною.
Звідси ж таки витікає,
що вектор
на зовнішній поверхні провідника
направлений по нормалі до кожної точки
його поверхні. Якби
це було не так, то під дією
заряди почали б
переміщуватись по поверхні провідника,
що протирічить рівновісному розподілу
зарядів.
3. Зв'язок
між вектором Е
поблизу провідника
і
.
Знайдемо взаємозалежність між
вектором
поблизу поверхні
зарядженого провідника і поверхневою
густиною
зарядів на його поверхні.
Для цього застосуємо теорему
Остроградського-Гаусса до нескінченно
малого циліндра з основою
,
який перетинає границю провідник –
діелектрик, і ось якого зорієнтована
вздовж вектора
(рис. 7.1)
Рис. 7.1 Рис. 7.2
Потік вектора електричного
зміщення через
внутрішню частину циліндричної поверхні
дорівнює нулю, оскільки всередині
провідника Е = D = 0,
і тому потік вектора
через замкнену циліндричну
поверхню визначається лише потоком
через зовнішню основу циліндра. Згідно
з теоремою Гаусса для електростатичного
поля в діелектриці
цей потік ()
дорівнює сумі зарядів
,
що охоплюються циліндричною поверхнею:
=
,
тобто
=
або
,
де
– діелектрична проникність середовища,
яке оточує провідник.
Можна показати, що це співвідношення визначає Е електростатичного поля поблизу поверхні провідника будь-якої форми.
Електростатична індукція
З'ясуємо, що саме відбудеться, якщо незаряджений провідник внести в задане електростатичне поле, яке створюється якими-небуть сторонніми нерухомими зарядами. В провіднику, внесеному в таке поле, повинні виникнути вільні електричні заряди (електрони, іони), які будуть переміщуватись: позитивні – в напрямку поля, негативні – проти напрямку поля (рис. 7.2, а). При цьому на одному кінці провідника буде накопичуватись надлишок позитивного заряду, а на іншому – негативного. Ці заряди називаються індукованими.
Переміщення зарядів відбуватиметься доти, доки Е всередині провідника не буде дорівнювати нулю (Е = 0), а лінії вектора напруженості електричного поля іззовні провідника – перпендикулярними до його поверхні (рис. рис. 7.2, б). З цього можна зробити такий висновок: незаряджений провідник, внесений в електростатичне поле, розриває певну частину ліній Е: ці лінії закінчуються на негативних індукованих зарядах і заново починаються на позитивних. При цьому індуковані заряди розподіляються на зовнішній поверхні провідника. Явище перерозподілу поверхневих зарядів на провіднику в зовнішньому електростатичному полі називається електростатичною індукцією.
Зазначимо, що, як це витікає
з рис. 7.2, б, індуковані
заряди з'являються на провіднику
внаслідок зміщення їх під дією поля
(тобто
є поверхневою густиною
зміщених зарядів), причому, як було
показано вище, електричне зміщення
поблизу провідника чисельно дорівнює
поверхневій густині зміщених зарядів.
Саме томувектор
отримав назву вектор електричного
зміщення.
Слід звернути увагу на використання на практиці властивості зарядів розміщуватися на зовнішній стороні провідника. Так, всередині провідника роблять порожнину (адже в середині провідника завжди Е = 0 і тому створення всередині порожнини не вплине на розподіл зарядів в провіднику). Причому, у випадку заземлення такого провідника з порожниною потенціал у всіх точках порожнини буде нульовим: порожнина буде повністю ізольованою від впливу зовнішніх електростатичних полів. Це так званий електростатичний захист: коли, наприклад, електровимірювальний чи інший прилад хочуть захистити від впливу зовнішніх полів, його оточують провідним футляром (екраном). Такий екран можна зробити не суцільним, а у вигляді густої металевої сітки.