
- •Химическая термодинамика, как теоретическая основа биоэнергетики Предмет, методы и основные понятия химической термодинамики
- •Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные
- •Термодинамические параметры
- •Внутренняя энергия системы
- •Форма обмена энергии с окружающей средой
- •Первое начало термодинамики. Тепловые эффекты химических реакций
- •1. В изолированной системе сумма всех видов энергии есть величина постоянная.
- •Изобарный и изохорный процессы. Энтальпия. Тепловые эффекты химических реакций
- •Термохимия. Закон Гесса
- •Влияние температуры и давления на тепловой эффект реакции
- •Использование закона Гесса в биохимических исследованиях
- •Энтропия. Второй закон термодинамики Энтропия
- •Второе начало термодинамики. Свободная энергия Гиббса
- •Принцип энергетического сопряжения
- •Химическое равновесие Обратимые и необратимые реакции. Константа равновесия
- •Смещение химического равновесия. Принцип Ле-Шателье
Изобарный и изохорный процессы. Энтальпия. Тепловые эффекты химических реакций
Существуют такие процессы, в ходе протекания которых остаются неизменными только один или несколько параметров системы, а все остальные меняются. Так, процесс, протекающий при постоянной температуре, называется изотермическим, при постоянном давлении – изобарным, а при постоянном объеме – изохорным. Если неизменными остаются температура и давление или температура и объем, то такие процессы называются, соответственно, изобарно-изотермическими или изохорно-изотермическими.
Так, например, химические реакции, протекающие в живых организмах, являются изобарно-изотермическими.
Большинство реакций, применяемых для промышленных и технических целей, осуществляется в условиях практически постоянного давления, т.е. является изобарными. Примерами изохорных реакций могут быть реакции, идущие в закрытом сосуде, реакции между твердыми телами и жидкостями без образования газа, реакции между газами, при протекании которых число молекул газа остается постоянным:
Н2(г)+Cl2(г)= 2НCl(г).
В изохорных процессах вся теплота, сообщенная системе или выделенная ею, определяется изменением внутренней энергии системы
U2–U1= ΔU,
где U1 – внутренняя энергия начального состояния системы;
U2 – внутренняя энергия конечного состояния системы.
В изобарных процессах для поддержания давления постоянным приходится изменять объем системы, т.е. увеличивать или уменьшать ее размеры (рис. 7). Говоря другими словами – совершать работу, которая определяется по формуле:
А = р · S·h= р ·V,
где р – давление системы;
ΔV – изменение объема системы (V2 – V1).
Рис. 7. К пояснению физического смысла энтальпии
В связи с этим в изобарных процессах выделяющуюся или затраченную теплоту нельзя определить только изменением внутренней энергии системы, нужно учесть совершенную работу, которая также эквивалентна определенному количеству энергии. В связи с этим в термодинамике используют новую величину – энтальпиюилитеплосодержание системы Н, определяемую соотношением:
Н = U+ рV
Энтальпия больше внутренней энергии на величину работы расширения, совершенной при изменении объема системы от 0 до V. Как и внутренняя энергия, энтальпия является функцией состояния и определить ее абсолютное значение нельзя. Можно только измерить изменение ΔН при переходе системы из одного состояния в другое:
ΔН = Н2– Н1= (U2+рV2) – (U1+ рV1) =U2–U1+ (рV2– рV1) = ΔU+ р(V2–V1) = ΔU+ рΔV
Протекание химических реакций сопровождается выделением или поглощением теплоты, которую можно измерить. Это количество теплоты называется тепловым эффектом химической реакции.
Химические реакции, в которых происходит выделение теплоты, называются экзотермическими. Реакции, при протекании которых наблюдается поглощение теплоты, называютсяэндотермическими.
Для реакций, протекающих при постоянном объеме, тепловой эффект (QV) равен изменению внутренней энергии системы:
QV=U2–U1= ΔU
Для реакций, протекающих при постоянном давлении, тепловой эффект (QР) равен изменению энтальпии системы:
QР= Н2– Н1= ΔН = ΔU+ А при этомU=QP–A
Разница между величинами QVиQРможет быть достаточно велика для систем, содержащих компоненты в газообразном состоянии. Причем, если в ходе реакции химическое количество газообразных веществ возрастает
N2O3 (г)→NO(г)+NO2 (г),
то QVбудет больше, чемQР, на величину работы расширения против внешних сил, которую нужно совершить системой, чтобы давление в ней осталось неизменным. На совершение данной работы необходимо затратить определенное количество выделившейся теплоты.
Величина этой работы, а значит, и разница между QVиQР, определяется соотношением:
QV–QР= рΔV= ΔnRT
где Δn – разность между числом молей газа в конечном и исходном состоянии; R – универсальная газовая постоянная; Т – температура системы.
Для реакций, сопровождающихся уменьшением химического количества газов
2NO(г)+O2 (г)= 2NO2 (г),
наоборот, QРбудет больше, чемQV, но теперь уже на величину работы сжатия системы, выполняемую внешней средой. При совершении ее выделится дополнительное количество энергии:
QР–QV= ΔnRT
Если же в ходе протекания реакции химическое количество газообразных веществ не меняется
Н2(г)+Cl2(г)= 2НCl(г),
то QV=QР.
Для реакций, в которых участвуют только жидкие и(или) твердые вещества, различием в QVиQРможно пренебречь, т.к. объем жидкостей и твердых тел при нагревании или охлаждении изменяется незначительно.