
- •1.Основные понятия и исходные положения термодинамики.
- •2. Биоэнергетика. Биотермодинамика.
- •3. Первое начало термодинамики и его применение к живым системам.
- •5. Тепловой баланс организма. Способы теплообмена.
- •6. Термометрия. Прямая и непрямая калориметрия.
- •7. Энтропия(э) и ее св-ва.
- •8. Свободная и связанная энергия в организме.
- •9. Второе начало термодинамики.
- •10.Термодинамические потенциалы как функции состояния термодинамической системы.
- •11. Организм как открытая система. Теорема Пригожина.
- •12. Значение биологических мембран в процессе жизнедеятельности клетки
- •13. Молекулярная организация и модели клеточных мембран
- •14. Физические свойства и параметры мембран
- •15. Значение изучения транспорта веществ через клеточные мембраны. Классификация мембранного транспорта
- •16. Пассивный транспорт веществ и его разновидности. Математическое описание пассивного транспорта
- •21. Потенциал покоя. Уравнение Нернста. Уравнение Гольдмана-Ходжкина-Катца
- •22. Механизм генерации потенциала действия
- •23. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам
- •24. Электрическое поле и его характеристики
- •27. Дипольный эквивалентный эл-кий генератор сердца.
- •30. Переменный ток и его хар-ки.
- •31. Цепь тока с активным сопротивлением.
- •32. Цепь с индуктивным сопротивлением.
- •33. Цепь с емкостным сопротивлением.
- •35.Электропроводность электролитов
- •37.Электропроводность биотканей для переменного . Зав-сть импеданса от частоты тока.
- •41.Эл-кий импульс, импульсный ток и их хар-ки.
- •43. Генератор импульса(релаксационного колебания) и их практическое применение.
- •44. Эл-ный осциллограф
- •45 Дифференцирующая цепь.
- •46. Интегрирующая цепь.
- •47. Электронные стимулятоы. Низкочаст. Физиотерапевт. Аппаратура.
- •48.Генераторы гармонических колебаний на транзисторе
- •49. Схема аппарата увч-терапии.Терапевтический контур.
- •50. Воздействие переменным электрическим полем.
- •51.Воздействие переменным магнитным.
- •52. Воздействие электромагнитными волнами.
- •53. Диатермия,дарсонвализация,диатермокоагуляция, диатермотомия.
- •54. Общая схема съема, передачи и регистр. Мед –биол. Информации
- •55. Электроды для съема сигнала.
- •59.Датчики температуры тела
- •61. Датчики параметров сердечно - сосуд. Системы.
- •65. Частотная хар-ка ус-теля. Линейные искажения.
30. Переменный ток и его хар-ки.
Переменным током называют ток, периодически изменяющийся по величине и по направлению. Переменный ток можно рассматривать как вынужденные электромагнитные (электрические колебания Наиболее распространенным является синусоидальный переменный ток, мгновенные значения которого изменяются во времени по закону синуса (косинуса) или по закону простого (гармонического) колебания.
ф = B S0,
где ф - магнитный поток; В - магнитная индукция.
(закон Фарадея или
закон электромагнитной индукции);
где
.
Соответственно, мгновенные значения напряжения "U" или тока "I" во внешней цепи генератора:
U = Um sint или I = Im sint,
где Um и Im - максимальные (амплитудные) значения, соответственно, напряжения и тока, = 2 - круговая частота переменного напряжения или тока.
Кроме мгновенных и амплитудных значений, для характеристики переменного тока пользуются эффективными или действующими (средними квадратичными за период) значениями напряжения и тока, которые обычно и указываются на шкале измерительных приборов. Для синусоидального переменного тока:
Назовем действующей или эффективной силой переменного тока Iэф такой постоянный ток, который выделяет в цепи с сопротивлением R количество теплоты, одинаковое с переменным током:
Pср
=
P,
;
средняя мощность Pср = UэфIэф cos.
Переменный ток - это также упорядоченное (направленное) движение носителей заряда, однако оно имеет колебательный характер. Электрическое поле изменяет свое направление на противоположное каждую половину периода.
Соответственно изменяется и направление перемещения зарядов в проводниках. Величина перемещения весьма мала и зависит от частоты переменного тока. Например, при средней скорости дрейфа электронов в металлическом проводнике порядка 0,1 см/сек и при частоте тока 50 Гц смещение электронов имеет порядок 0,001 см. Для ионов в растворе электролита эта величина еще меньше.
При достаточно высокой частоте это смещение становится такого же порядка, как и смещение зарядов в тепловом движении. Однако колебания зарядов, образующих ток, от последнего отличаются упорядоченным (направленным) характером.
Переменный ток частотой 4:-5 кГц применяется, подобно импульсным токам, для цепей электростимуляции, а частотой 20-30кГц (при малых силах тока) - при измерении, например, полного сопротивления тканей организма. Переменный ток 200 кГц и выше даже при значительных силах тока раздражающего действия на ткани организма не оказывает, но тепловой эффект тока при этом сохраняется, поэтому высокочастотные токи применяются для тепловых лечебных процедур - прогревания глубоко лежащих тканей организма.
Колебательное движение зарядов вносит ряд отличий в явления, происходящие в цепях переменного тока, по сравнению с постоянным. Например, конденсатор является проводником в цепи переменного тока; в цепи, содержащей индуктивность, постоянно действует э.д.с. самоиндукции, которая имеет также переменный характер; в цепи с раствором электролита не происходит электрической поляризации и потому сопротивление такой цепи (а следовательно и тканей организма) при прочих равных условиях значительно меньше, чем при постоянном токе, и т.д.