- •1. Фундаментальные физические взаимодействия: гравитационные, электромагнитные, сильные и слабые; основные характеристики и значение в природе. Особая роль электромагнитных взаимодействий.
- •3. Резонансы Шумана:
- •6. Поток и дивергенция векторного поля. Электростатическая теорема Гаусса для вакуума: интегральная и дифференциальная формы теоремы; ее физические содержание и смысл.
- •15. Объемная плотность энергии электрического поля. Механические силы в электростатическом поле: метод виртуальных перемещений; давление электростатических сил.
- •16 Электрическое поле на границе раздела диэлектриков: граничные условия для векторов напряженности электрического поля и электрического смещения; преломление силовых линий электрического поля.
- •17 Механизмы и модели поляризации диэлектриков: неполярные и полярные разреженные и плотные газы; сегнетоэлектрики, пьезоэлектрики и пироэлектрики. Применение диэлектриков в технике.
- •20. Электродвижущая сила. Неоднородный участок линейной цепи постоянного тока: обобщенный закон Ома, правило знаков, баланс мощностей.
- •21. Полная линейная цепь постоянного тока: механизм протекания тока, закон Ома, баланс мощностей, основные режимы работы полной цепи.
- •22. Правила Кирхгофа: физическое обоснование, формулировка, правила знаков; применение для расчета линейных электрических цепей, баланс мощностей.
- •23. Классическая теория проводимости: природа носителей тока в металлах; постулаты теории, дифференциальная форма законов Ома и Джоуля-Ленца.
- •25. Электрические явления в контактах твердых тел одинакового типа проводимости: контактная разность потенциалов; эффекты Пельтье и Зеебека, их применение в технике.
- •26. Электронно-дырочный переход и его основные свойства: вольтамперная характеристика перехода. Биполярные полупроводниковые приборы.
- •27. Эмиссия электронов с поверхности проводящих тел: термоэлектронная, фотоэлектронная, вторичная электронная, автоэлектронная; физическая сущность и основные характеристики.
- •28. Электрический ток в вакууме: уравнение Богуславского-Ленгмюра, формула Ричардсона; вольтамперная характеристика идеального диода. Электронные вакуумные приборы.
- •29. Несамостоятельные газовые разряды: внешний ионизатор; объемная и катодная рекомбинации; вольтамперная характеристика.
- •31. Электрический ток в электролитах: диссоциация и рекомбинация растворенных молекул, степень диссоциации, уравнение Оствальда; удельная проводимость электролитов.
- •32. Электролиз: физическая сущность явления, законы Фарадея для электролиза, постоянная Фарадея. Применение в технике: гальванические покрытия и тонкая очистка металлов.
- •33. Электродные потенциалы: механизмы возникновения и восстановления. Применение в технике: измерение концентрации ионов в растворе, химические источники тока.
- •14. Потенциальная энергия взаимодействия электрических зарядов: система точечных зарядов; система заряженных проводников; энергия заряженного конденсатора.
- •46. Взаимная индукция: физическая сущность явления; взаимная индуктивность двух проводящих контуров, электродвижущая сила взаимной индукции; расчет взаимной
- •49 Объемная плотность энергии магнитного поля. Механические силы в стационарном магнитном поле: метод виртуальных перемещений; давление магнитных сил.
- •56. Метод комплексных амплитуд. Параллельная линейная rlc-цепь синусоидального переменного тока: импеданс, разность фаз, резонансные явления.
- •56. Метод комплексных амплитуд. Параллельная линейная rlc-цепь синусоидального переменного тока: импеданс, разность фаз, резонансные явления.
- •58. Гипотеза Максвелла о токах смещения: физическое обоснование, теорема о циркуляции напряженности магнитного поля по Максвеллу.
- •59. Система уравнений Максвелла: интегральная и дифференциальная формы полевых уравнений, материальные уравнения; физический смысл уравнений, их значение в электродинамике.
- •60. Закон сохранения энергии электромагнитного поля: уравнение непрерывности для электромагнитного поля, вектор Умова-Пойнтинга; перемещение энергии электромагнитного поля в пространстве.
- •61. Волновое движение: физическая сущность и волновое уравнение; анализ уравнений Максвелла на соответствие волновому уравнению.
- •43. Магнитомеханические явления: гиромагнитное отношение, магнетон Бора, ларморова прецессия. Опыт Штерна и Герлаха
- •44. Механизмы и модели намагничивания магнетиков: диамагнетики, парамагнетики, ферромагнетики. Применение магнетиков в технике.
15. Объемная плотность энергии электрического поля. Механические силы в электростатическом поле: метод виртуальных перемещений; давление электростатических сил.
Объемная
плотность энергии электрического поля
Это физическая величина, численно равная
отношению потенциальной энергии поля,
заключенной в элементе объема, к этому
объему. Для однородного поля объемная
плотность энергии равна w=W/V
. Для плоского конденсатора, объем
которого Sd,
где S
- площадь пластин, d
- расстояние между пластинами, имеем

Рассмотрим бесконечно малые перемещения точек системы, совместимые со связями, наложенными на систему. Среди этих перемещений будем различать два вида перемещений - виртуальные и действительные.
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δri называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.
Рассмотрим бесконечно малые перемещения точек системы, совместимые со связями, наложенными на систему. Среди этих перемещений будем различать два вида перемещений - виртуальные и действительные.
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δri называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.
Отметим еще ряд особенностей виртуальных и действительного перемещения точки:
а) у точки имеется только одно элементарное действительное перемещение, а виртуальных перемещений у точки может быть несколько и даже бесконечно много, например в случае, когда на точку наложена только одна голономная связь;
b) если голономная связь нестационарная, то элементарное действительное перемещение не совпадает ни с одним из виртуальных перемещений точки;
c) если голономная связь стационарна, то элементарное действительное перемещение точки совпадает с одним из ее виртуальных перемещений
16 Электрическое поле на границе раздела диэлектриков: граничные условия для векторов напряженности электрического поля и электрического смещения; преломление силовых линий электрического поля.
На
границе двух диэлектриков с различными
диэлектрическими проницаемостями
, и
при наличии внешнего поля возникают
поляризационные заряды разного знака
с различными поверхностными плотностями
зарядов
и
Дополнительное
поле, создаваемое этими зарядами,
перпендикулярно поверхности, поэтому
нормальные составляющие полей E1,
и E2
в обеих средах у границы раздела различны,
а касательный составляющие одинаковы,
т.е.

Векторы
электростатического смещения в обеих
средах соответственно равны


При
переходе через границу раздела из
диэлектрика с меньшим значением
в диэлектрик с большим значением
, нормальная составляющая вектора
остается неизменной, а касательная
увеличивается, так что линии вектора
преломляются под таким же углом как и
линии напряженности поля (рис. 14.8).
Таким
образом, при переходе через границу
раздела двух диэлектриков изменяется
не только вектор напряженности
электрического поля
, но и вектор
. Однако поток вектора
через произвольную площадку
на границе раздела, равный по определению
, с обеих сторон поверхности на основании
остается неизменным. Следовательно,
число линий вектора электрического
смещения, переходящих через границу,
не меняется. Поэтому теорема Гаусса
остается справедливой для вектора
в самом общем случае при наличии в поле
диэлектриков любой формы и размеров.
