
- •2.Высказывания.Операции над высказываниями.
- •3. Тождественно истинные и тождественно ложные высказывания. Равносильные высказывания.
- •4.Суперпозиция функций. Бинарные отношения. Свойства бинарных отношений
- •5.Отношение порядка. Отношение эквивалентн. Бинарные опер.
- •6. Алгебры. Алгебра Кантора и булева алгебра. Изоморфизм. Операции над двоичными числами.
- •7. Булевы функции. Мощность множества булевых функций от переменных.
- •8. Элементарные булевы функции.
- •9. Формулы. Основные эквивалентности формул.
- •Порядок действий в формулах алгебры логики
- •10. Принцип двойственности. Двойственные булевы функции.
- •11.Теорема о разложении
- •12. Совершенные дизъюнктивные нормальные формы.
- •25. Перестановки с повторениями
- •26. Полиномиальная теорема. Принцип Дирихле.
- •27.Рекуррентные соотношения и производящие функции.
- •28. Принцип включения и исключения:
- •30. Схемы правильных рассуждений. Аксиоматические теории
- •32. Минимальные , кратчайшие и тупиковые днф.
- •33. Сокращённые днф. Построение сокращённых днф булевых функций методом Блейка.Пример.
- •34. Построение сокращённых днф булевых функций методом Квайна.Пример.
- •35.Построение Сокращенных днф геометрическим методом. Пример.
- •36. Построение минимальных днф с помощью карт Карно.
- •37. Метод Нельсона. (Построение сокращенной днф с помощью кнф).
- •38.Построение всех тупиковых днф. Алгоритм минимизации функций в классе нормальных форм.
- •39. Понятие о функциях k-значной логики. Их особенности.
- •40.Графы. Изоморфизм графов.
- •41.Способы задания графов.
- •42. Действия над графами.
- •43. Ориентированные и неориентированные графы.
- •44.Маршруты. Пути. Цепи. Связные графы.
- •45. Геометрическая реализации графа. Теорема о реализации конечного графа в трёхмерном пространстве.
- •46.Эйлеровы циклы. Задача о кенигсбергских мостах. Теорема Эйлера.
- •47.Обобщенная теорема об эйлеровых цепях.
- •48. Гамильтоновы графы. Задача о коммивояжере.
- •49. Взвешенный граф. Граф-дерево.
- •50. Цикломатическое число. Остов графа. Базис циклов.
- •51. Двудольные графы.
- •52. Планарные графы. Критерий планарности.
- •53. Теорема Куратовского-Понтрягина. Граф Петерсена.
- •54.Двухполюсные сети. Параллельно-последовательные сети. Поток в сети.
- •55.Теорема Форда-Фалкерсона о максимальном потоке. Расчет максимального потока в сети.
- •56.Общие принципы помехоустойчивого кодирования. Примеры.
- •57.Типы ошибок. Сжатие информации.
- •58.Код Хэмминга.
- •59.Троичный код Хэмминга. Пример.
- •60.Алфавитное кодирование.
- •61. Алгоритм Фано.Пример
- •62. Алгоритм кодирования Хаффмена.Пример
- •63. Формальные грамматики. Основные понятия.
- •64. Классификация языков по Хомскому
- •65. Типы языков. Вывод цепочек. Дерево вывода
- •66.Конечные автоматы. Автоматы Мили и Мура. Канонические уравнения
- •67.Таблица состояний, диаграмма состояний автомата.
- •68.Дешифратор.
- •69.Реализация автоматов схемами.
- •70. Ограниченно детерминированные функции. Информационные деревья.
- •71. Понятие алгоритма. Основные свойства алгоритмов. Вычислимость.
- •72. Рекурсивные функции. Операторы суперпозиции и примитивной рекурсии.
- •73. Примитивно рекурсивные предикаты. Свойства.
- •74. Классы рекурсивных функций. (п.Р., о.Р., ч.Р.). Тезис Черча.
- •75. Машины Тьюринга. Принципы работы. Протокол работы.
- •76.Машины Тьюринга. Примеры. Функции, вычислимые по Тьюрингу.
49. Взвешенный граф. Граф-дерево.
Определим понятие
взвешенного графа. Сопоставим каждой
вершиневес
из
множества весов W . В результате получим
множество взвешенных вершин{
},
при этом не обязательно, чтобы все веса
были различными.
Аналогично
сопоставим каждому ребрувес
из множества весовP. В результате получим
множество взвешенных ребер {
}.
Определенные выше множества взвешенных
вершин и ребер определяют в совокупности
граф, взвешенный по вершинам и ребрам.
Опр. Н-граф называется неориентированным деревом (или просто деревом), если он связен и не содержит циклов, а значит, петель и кратных ребер. Дерево – это минимальный связный граф в том смысле, что при удалении хотя бы одного ребра он теряет связность.
Наличие этих двух свойств (связность и отсутствие циклов) позволяет жестко связать число вершин и число ребер: в дереве с n вершинами всегда n -1 ребер. В этом графе 8 вершин и 7 ребер. Ни одно ребро нельзя удалить из графа без того, чтобы он не потерял связность.
Деревом называется связный граф без циклов. Вот пример дерева (рис1):
А вот пример графа, не являющегося деревом (рис 2):
Рис 2. Рис1.
50. Цикломатическое число. Остов графа. Базис циклов.
Пусть
– связный
граф.
Остов(наименьший
из всех графов, имеющий n
вершин) этого графа содержит n-1
ребро.
Если ранее в графе было N ребер, то удалить пришлось k=N-n+1 ребро. Величина k=N-n+1 называется цикломатическим числом связного графа.
Цикломатическое число несвязного графа равно сумме цикломатических чисел связных компонент. Очевидно, что для любого графа–дерева это число равно нулю.
Пусть G — произвольный (n, m)-граф с k компонентами связности. Если G — не дерево, то в нем (его компонентах связности) существуют циклы. Рассмотрим какой-либо цикл и удалим из него некоторое ребро. При этом количество компонент связности не увеличится. Если после этого еще останутся циклы, то рассмотрим следующий из них и снова удалим какое-либо его ребро. Продолжим этот процесс до тех пор, пока не исчезнут все циклы. Полученный в результате подграф, который, очевидно, является лесом и имеет столько же компонент связности, как и исходный граф G, называется остовом графа G.
Базис циклов— базис пространства циклов графа, состоящий только из простых циклов. Базис циклов является максимальным набором независимых простых циклов графа или минимальным набором простых циклов, от которых зависят все циклы.
51. Двудольные графы.
Опр. Граф G называется двудольным (или четным), если
множество его
вершин V распадается на два непересекающихся
подмножества
и
,
таких, что каждое ребро графа G имеет
один конец из
,
а другой из
.
Для двудольных графов справедлива следующая теорема: граф Gявляется двудольным, если все его циклы имеют четную длину.
Опр. Граф называется двудольным, если множество его вершин можно разбить на две части (доли) так, чтобы концы каждого ребра принадлежали разным долям.
Пример |
Определение |
Двудольный
граф называется полным двудольным,
если любые две его вершины, принадлежащие
разным долям, смежны. Обозначают: Пример |