- •Тема 1 Жизнь, её свойства, уровни организации, происхождение и
- •1 Предмет, задачи и методы биологии
- •2Уровни организации живой природы
- •3 Систематика живых организмов
- •Тема 2 Химический состав живых организмов
- •Тема 3 Обмен веществ и превращение энергии
- •2 Фотосинтез. Хемосинтез
- •Тема 4 Морфологические, физиологические и биохимические
- •1 Типы клеточной организации
- •2 Строение эукариотических клеток
- •Тема 5 Классификация тканевых систем, их строение и
- •2 Ткани растений
- •Тема 6 Индивидуальное развитие организмов
- •Тема 7 Эколого-физиологические основы
- •2 Факторы устойчивости против высыхания
- •Тема 8 Эколого-физиологические основы фотосинтеза
- •2 Влияние максимальных и минимальных концентраций углекислоты
- •3 Влияние температуры на интенсивность фотосинтеза
- •Тема 9 Эколого-физиологические основы дыхания растений
- •Тема 10 Эколого-физиологические основы минерального питания
- •2 Минеральные вещества в фитоценозах
- •Тема 11 Приспособление растений к условиям внешней среды
- •2 Критические периоды при воздействии стрессовых условий на растение
- •Тема 12 Защитно-приспособительные реакции растений против повреждающих факторов
- •2 Механизмы защиты.
- •Тема 13 Физиология устойчивости
- •Тема 14 Понятие о наследственности
- •4 Генетика пола. Взаимодействие генов.
- •Тема 15 Закономерности изменчивости
- •Тема 16 Основные этапы развития современной генетики
- •2 Генетика и медицина.
- •Тема 17 Влияние внешней среды на функциональную адаптацию
- •2 Системы управления в биологии. Природа и регуляция внутренней среды
- •3 Регуляция содержания дыхательных газов в крови
- •4 Регуляция уровня метаболитов в крови
- •Тема 18 Реакции организма на изменения внешней температуры
- •2 Тепловой баланс и роль гипоталамуса.
- •3 Адаптация к жизни при низких температурах.
- •Тема 19 Биологические ритмы
- •1 Значение биологических ритмов
Тема 3 Обмен веществ и превращение энергии
Цель: Сформировать понятия об обмене веществ как совокупности химических превращений, о ферментативном характере реакций, о структуре и функции АТФ
План:
1 Понятие о метаболизме. АТФ и ее роль в метаболизме.
Пластический и энергетический обмены
2 Фотосинтез. Хемосинтез
Для химических реакций, протекающих в клетке, характерна организованность и упорядоченность: каждая реакция протекает в строго определенном месте. В клетке обнаружено примерно тысяча ферментов. С помощью этого каталитического аппарата осуществляется сложнейшая и многообразная жизнедеятельность клетки. Все химические реакции клетки подразделяют на два типа. Первый – процессы синтеза, когда из простых низкомолекулярных веществ синтезируются, образуются более сложные, высокомолекулярные. Синтез веществ, идущий в клетке, называется биосинтезом. Все реакции биосинтеза идут с поглощением энергии. Совокупность реакций биосинтеза называется пластическим обменом или ассимиляцией.
Второй тип химических реакций – реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные на низкомолекулярные. Белки распадаются на аминокислоты, крахмал – на глюкозу. Эти вещества расщепляются еще, и в конце концов образуются совсем простые , бедные энергией вещества: углекислый газ и вода. Все эти реакции сопровождаются выделением энергии. Совокупность реакций расщепления называется энергетическим обменом клетки или диссимиляцией.
Пластический и энергетический обмены находятся между собой в неразрывной связи. Совокупность всех ферментативных реакций клетки, т.е. совокупность пластического и энергетического обменов, связанных между собой и с внешней средой, называется обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста и функционирования.
Любая деятельность клетки всегда точно совпадает во времени с распадом АТФ. АТФ – единый и универсальный источник энергии для функциональной деятельности клетки.
Энергетический обмен в клетке для удобства изучения подразделяется на три последовательных этапа. Первый этап – подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, которые попадают в организм с пищей, распадаются под действием ферментов пищеварительной системы на более мелкие молекулы: из крахмала образуется глюкоза, из жиров – глицирин и жирные кислоты, из белков – аминокислоты. Вся освобождающаяся при этом энергия рассеивается в виде тепла. В стенках тонкого кишечника происходит процесс активного всасывания, образовавшиеся молекулы из кишечника попадают в кровь и лимфу, разносятся по всему организму , и путем диффузии проникают внутрь клетки.
Второй этап – бескислородный или неполный обмен. Ферменты, обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй, третий и т.д. – вступая на путь дальнейшего распада. Так, в результате бескислородного расщепления глюкозы – гликолиза, образуется из одной молекулы глюкозы две молекулы пировиноградной кислоты. В гликолизе принимают участие 13 ферментов и образуется 12 промежуточных веществ. Почти все эти реакции идут с высвобождением энергии, которая способна запасаться в виде энергии АТФ.
Третий этап – стадия кислородного или полного расщепления, стадия дыхания. Продукты, возникающие в предыдущей стадии, окисляются до конца, т.е. до углекислого газа и воды. Основное условие осуществления этого процесса – наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления так же каскад ферментативных последовательных реакций. Принципиальное отличие от второго этапа – количество синтезированных молекул АТФ, их гораздо больше.
Таким образом, организм с пищей получает различные высокомолекулярные органические соединения, и на уровне клеток происходит второй и третий этапы энергетического обмена, в результате которого расщепляются вещества, пришедшие в клетку, и запасается энергия в виде молекул АТФ. А затем, с использованием энергии АТФ, клетка начинает синтезировать те молекулы, которые необходимы ей для своей жизнедеятельности – пластический обмен.
