
- •Тема 1 Жизнь, её свойства, уровни организации, происхождение и
- •1 Предмет, задачи и методы биологии
- •2Уровни организации живой природы
- •3 Систематика живых организмов
- •Тема 2 Химический состав живых организмов
- •Тема 3 Обмен веществ и превращение энергии
- •2 Фотосинтез. Хемосинтез
- •Тема 4 Морфологические, физиологические и биохимические
- •1 Типы клеточной организации
- •2 Строение эукариотических клеток
- •Тема 5 Классификация тканевых систем, их строение и
- •2 Ткани растений
- •Тема 6 Индивидуальное развитие организмов
- •Тема 7 Эколого-физиологические основы
- •2 Факторы устойчивости против высыхания
- •Тема 8 Эколого-физиологические основы фотосинтеза
- •2 Влияние максимальных и минимальных концентраций углекислоты
- •3 Влияние температуры на интенсивность фотосинтеза
- •Тема 9 Эколого-физиологические основы дыхания растений
- •Тема 10 Эколого-физиологические основы минерального питания
- •2 Минеральные вещества в фитоценозах
- •Тема 11 Приспособление растений к условиям внешней среды
- •2 Критические периоды при воздействии стрессовых условий на растение
- •Тема 12 Защитно-приспособительные реакции растений против повреждающих факторов
- •2 Механизмы защиты.
- •Тема 13 Физиология устойчивости
- •Тема 14 Понятие о наследственности
- •4 Генетика пола. Взаимодействие генов.
- •Тема 15 Закономерности изменчивости
- •Тема 16 Основные этапы развития современной генетики
- •2 Генетика и медицина.
- •Тема 17 Влияние внешней среды на функциональную адаптацию
- •2 Системы управления в биологии. Природа и регуляция внутренней среды
- •3 Регуляция содержания дыхательных газов в крови
- •4 Регуляция уровня метаболитов в крови
- •Тема 18 Реакции организма на изменения внешней температуры
- •2 Тепловой баланс и роль гипоталамуса.
- •3 Адаптация к жизни при низких температурах.
- •Тема 19 Биологические ритмы
- •1 Значение биологических ритмов
2 Влияние максимальных и минимальных концентраций углекислоты
СО2 является основным субстратом фотосинтеза; его содержание определяет интенсивность процесса. Концентрация СО2 в атмосфере составляет 0,03%. В слое воздуха высотой 100 м над гектаром пашни содержится 550 кг СО2. Из этого количества за сутки растения поглощают 120 кг СО2. Зависимость фотосинтеза от СО2 выражается логарифмической кривой. При концентрации 0,03 % интенсивность фотосинтеза составляет лишь 50 % от максимальной, которая достигается при 0,3% СО2. Это свидетельствует о том, что в эволюции процесс фотосинтеза формировался при большей концентрации СО2 в атмосфере. Кроме того, такой ход зависимости продуктивности фотосинтеза от концентрации СО2 указывает на возможность подкормки растений в закрытых помещениях СО2 для получения большего урожая. Такая подкормка СО2 оказывает сильное влияние на урожай растений с С3-типом ассимиляции СО2 и не влияет на растения С3.
С4-типом, у которых существует особый механизм концентрирования СО2.
3 Влияние температуры на интенсивность фотосинтеза
Общая зависимость фотосинтеза от температуры выражается одновершинной кривой. Кривая имеет три основные (кардинальные) температурные точки: минимальную, при которой начинается фотосинтез, оптимальную и максимальную. Интенсивность фотосинтеза при супероптимальных температурах зависит от продолжительности их воздействия на растения. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах —15 °С (сосна, ель) —0,5 °С, а у тропических растений — в зоне низких положительных температур 4 — 8 °С. У растений умеренного пояса в интервале 20 — 25 °С достигается максимальная интенсивность фотосинтеза, а дальнейшее повышение температуры до 40 °С приводит к быстрому ингибированию процесса (при 45 °С растения погибают). Некоторые растения пустынь способны осуществлять фотосинтез при 58 °С. Температурные границы фотосинтеза можно раздвинуть предварительным закаливанием, адаптацией растений к градиенту температур. Наиболее чувствительны к действию температуры реакции карбоксилирования, превращения фруктозо-6-фосфата в сахарозу и крахмал, а также транспорт сахарозы из листьев в другие органы
Необходимо отметить, что влияние на фотосинтез света, концентрации СО2 и температуры осуществляется в сложном взаимодействии. Особенно тесно взаимосвязаны свет, действующий на скорость фотохимических реакций, и температура, контролирующая скорость энзиматических реакций. В условиях высокой интенсивности света и низких температур (5—10°С), когда главным фактором, лимитирующим скорость всего процесса, являются ферментативные реакции, контролируемые температурой, значения Q10 могут быть > 4. При более высоких температурах Q10 снижается до 2. При низких интенсивностях света Q10 = 1, т. е. фотосинтез относительно независим от температуры, так как его скорость в данном случае ограничивается фотохимическими реакциями.
4 Влияние оводненности и минерального питания на фотосинтез. Вода непосредственно участвует в фотосинтезе синтезе как субстрат окисления и источник кислорода. Другой аспект влияния содержания воды на фотосинтез состоит н том, что величина оводненности листьев определяет степени открывания устьиц и, следовательно, поступления СО2 в лист При полном насыщении листа водой устьица закрываются что снижает интенсивность фотосинтеза. В условиях засухе чрезмерная потеря воды листом также вызывает закрывании устьиц под влиянием увеличения содержания в листья абсцизовой кислоты в ответ на недостаток влаги. Длительный водный дефицит в тканях листа при засухе приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования и к снижению величины отношения ATP/NADPH за счет большего торможения образования АТР. Максимальный фотосинтез наблюдается при небольшом водном дефиците листа (порядка 5 — 20% от полного насыщения) при открытых устьицах.
Минеральное питание. Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Два основных процесса питания растительного организма — воздушный и корневой — тесно взаимосвязаны. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов электронтранспортной цепи, каталитических систем хлоропластов, структурных и транспортных белков), а также для его обновления и функционирования.
Кислород. Процесс фотосинтеза обычно осуществляется в аэробных условиях при концентрации кислорода 21%. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.
Обычная концентрация О2 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза.
Высокие концентрации О2 (25 — 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления О2 и уменьшение концентрации СО2 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы. Наконец, О2 может окислять первичные восстановленные продукты фотосинтеза.
Литература: 2, т.1, с.280-300
Контрольные вопросы:
1 Каковы оптические свойства хлорофилла?
2 Какие свойства проявляет хлорофилл в растворе и в хлоропластах?
3 Каковы исходные вещества и продукты световых реакций?
4 Какова роль АТФ и фермента – переносчика водорода в процессе фотосинтеза?
5 Каковы исходные вещества и конечные продукты темновых реакций?