- •Техническая термодинамика и теплотехника
- •2 Предмет и метод технической термодинамики
- •1Основные понятия и определения
- •4Термодинамическая система
- •3 Основные параметры состояния
- •5 Уравнение состояние
- •6 Работа газа и теплота
- •Термодинамический процесс
- •7 Идеальные газы и их смеси
- •8 Газовые смеси
- •9 Способы задания смеси газов
- •Определение кажущейся молекулярной массы и параметров состояния смеси
- •24 Теплоемкость
- •10 Первый закон термодинамики
- •11 Энтальпия
- •12 Энтропия
- •14 Термический кпд
- •15 Цикл Карно
- •16 Аналитическое выражение 2-го закона т-ки
- •17 Изменение энтропии в необратимых процессах
- •18 Эксэргия
- •19 Термодинамические процессы
- •Политропный процесс
- •28 Термодинамические процессы в реальных газах и парах Свойства реальных газов
- •32 Водяной пар Основные понятия и определения
- •33 Pv-диаграмма водяного пара
- •34 Тs-диаграмма водяного пара
- •35Is-диаграмма водяного пара
10 Первый закон термодинамики
Как известно, энергия не исчезает и не возникает из ничего, а только переходит из одной формы в другую. В 1842 г. Р. Майер установил эквивалентность теплоты и механической работы, не зависящую от характера процесса превращения энергии:
, (48)
где А – постоянная величина, называемая тепловым эквивалентом работы.
А величина размерная и зависит от системы единиц, выбранных для измерения теплоты и работы. Если теплота и работа выражаются в одних единицах (джоулях), то эквивалент равен единице и тогда Q=L.
Так как подведенная к системе теплота приводит в общем случае к изменению внутренней энергии системы и совершению внешней работы, на основе закона сохранения энергии первый закон термодинамики для изолированных систем можно записать:
. (49)
Из полученного уравнения следует, что подведенная к изолированной системе теплота расходуется на изменение внутренней энергии и совершение внешней работы или без подвода теплоты внешняя работа может совершаться только за счет внутренней энергии системы.
Уравнение (49) показывает также, что подвод теплоты к термодинамической системе определяется термодинамическим процессом, т.е. внешняя работа зависит от характера процесса.
В изолированной системе запас энергии не изменяется, поэтому совершение работы возможно в течение некоторого времени только в неравновесном процессе (механическом, термическом, химическом, ядерном) за счет уменьшения внутренней энергии. Нельзя получать работу от тел, находящихся, например, в температурном равновесии, хотя эти тела обладают определенным запасом внутренней энергии.
Отсюда видна невозможность создания вечного двигателя первого рода, который производил бы работу без внешнего источника энергии и вечного двигателя второго рода, совершающего работу с рабочим телом, находящимся в тепловом равновесии.
В открытых системах подвод теплоты может привести не только к изменению параметров состояния самого рабочего тела (в частности полной внутренней энергии рабочего тела), но и к изменению кинетической и потенциальнойэнергий внешней среды (поскольку открытые системы, как отмечено ранее, обмениваются с окружающей средой не только веществом, но и энергией):
(50)
где – скорость движения рабочего тела, м/с;
–ускорение свободного падения, м/с2;
–изменение уровня центра инерции рабочего тела, м.
Особенно четко это проявляется при движении рабочего тела, например, по движущимся каналам между лопатками турбин. Внешняя работа в этом случае расходуется на работу вытеснения рабочего тела по каналу и на техническую работу перемещения самого канала в пространстве под действием сил, нормальных к стенкам канала. Таким образом при видимом движении рабочего тела в открытых системах:
. (51)
С учетом изложенного первый закон термодинамики для открытых систем можно выразить следующим уравнением:
. (52)
Таким образом, согласно выражению (52) подведенная к открытой системе теплота расходуется на изменение внутренней энергии рабочего тела, кинетической и потенциальной энергий внешней среды и на совершение истинной и технической работы.