
- •Техническая термодинамика и теплотехника
- •2 Предмет и метод технической термодинамики
- •1Основные понятия и определения
- •4Термодинамическая система
- •3 Основные параметры состояния
- •5 Уравнение состояние
- •6 Работа газа и теплота
- •Термодинамический процесс
- •7 Идеальные газы и их смеси
- •8 Газовые смеси
- •9 Способы задания смеси газов
- •Определение кажущейся молекулярной массы и параметров состояния смеси
- •24 Теплоемкость
- •10 Первый закон термодинамики
- •11 Энтальпия
- •12 Энтропия
- •14 Термический кпд
- •15 Цикл Карно
- •16 Аналитическое выражение 2-го закона т-ки
- •17 Изменение энтропии в необратимых процессах
- •18 Эксэргия
- •19 Термодинамические процессы
- •Политропный процесс
- •28 Термодинамические процессы в реальных газах и парах Свойства реальных газов
- •32 Водяной пар Основные понятия и определения
- •33 Pv-диаграмма водяного пара
- •34 Тs-диаграмма водяного пара
- •35Is-диаграмма водяного пара
Определение кажущейся молекулярной массы и параметров состояния смеси
В теорию газовых смесей введено понятие о средней (кажущейся) молекулярной массе смеси см, т.е. о молекулярной массе такого воображаемого однородного газа, который по своим свойствам аналогичен рассматриваемой смеси.
Находится кажущаяся молекулярная масса следующим образом. Из определения киломоля вытекает равенство, справедливое для любого однородного газа:
, (24)
где n - количество вещества компонента, моль.
Для смеси по аналогии можно записать:
. (25)
Отсюда, из равенства:
(26)
следует, что:
, (27)
где ;
;
…;
– мольные доли компонентов смеси,моль.
Поскольку
то среднюю молекулярную массу можно
выразить:
. (28)
Если известен массовый состав смеси, то кажущуюся молекулярную массу смеси вычисляют по уравнению:
. (29)
Если известен объемный состав смеси (объемная доля компонентов), то плотность смеси газов можно вычислить из соотношений:
. (30)
Если газовая смесь задана массовыми долями, то плотность смеси можно определить из соотношения:
. (31)
Удельный объем смеси представляет величину, обратную плотности смеси:
. (32)
Объемные доли компонентов смеси удобно использовать для вычисления парциальных давлений ее составных частей. Из уравнения:
, (33)
следует, что:
, (34)
т.е. для любого компонента смеси можно записать:
. (35)
24 Теплоемкость
Теплоемкостью называется количество теплоты, которое необходимо подвести к какой-либо количественной единице рабочего тела, чтобы нагреть ее на 1 градус (1 °С или 1 К).
Истинная теплоемкость – производная количества теплоты по температуре, она определяется в виде отношения:
, (36)
откуда:
. (37).
Теплоемкость
зависит от характера процесса, при
котором подводится или отводится
теплота, поэтому при экспериментальном
определении ее значения обычно используют
два термодинамических процесса,
протекающих при постоянном объеме
и давлении
.
Значения теплоемкостей
и
для различных веществ сведены в таблицы.
Подведенная
при постоянном объеме теплота, когда
dl=0,
расходуется только на изменение
внутренней энергии. При постоянном
давлении некоторое количество теплоты
идет также на совершение работы, поэтому
для изменения температуры рабочего
тела на 1 градус при P
= const
требуется большее количество теплоты,
чем при v
= const
и, следовательно
.
В зависимости от способа определения количества рабочего тела (т.е. от количественной единицы измерения рабочего тела, которую необходимо нагреть) теплоемкости делят на:
удельные массовые:
и
,
;
удельные объемные:
и
,
;
удельные молярные:
и
,
.
Все они связаны м/у собой соотношениями:
; (38)
; (39)
. (40)
Теплоемкости
и
газа не зависят ни от объема, ни от
давления, и являются однозначными
функциями температуры. Иногда, в
приближенных расчетах, зависимостью
от температуры пренебрегают и значения
теплоемкости принимают постоянными.
Тогда в соответствии с выражением (37):
. (41)
В большинстве случаев функцию С=f(Т) (см. рисунок 3) приходится учитывать и использовать для определения количества подведенной или отведенной теплоты, которая численно равна площади под характеристикой 1-2 процесса. Количество теплоты можно найти, если использовать средние значения теплоемкости Сср, при V = const или Р = const определяются отношением:
. (42)
Рисунок 3 – Зависимость теплоемкости от температуры
В этом случае площадь а34в, равна площади а12в. С помощью Сср, можно рассчитать количество теплоты по формуле аналогичной выражению (42).
Если необходимо получить количество подведенной теплоты в интервале температур T1 – T2 , то поступают следующим образом: сначала определяют количество теплоты
,
,
а затем:
. (43)
Для многих теплотехнических расчетов зависимость С=f(Т) принимают линейной, тогда:
. (44)
В этом случае
, (45)
тогда:
. (46)
Если рабочим телом является смесь газов, то ее теплоемкость зависит от состава смеси:
(47)