
- •Техническая термодинамика и теплотехника
- •2 Предмет и метод технической термодинамики
- •1Основные понятия и определения
- •4Термодинамическая система
- •3 Основные параметры состояния
- •5 Уравнение состояние
- •6 Работа газа и теплота
- •Термодинамический процесс
- •7 Идеальные газы и их смеси
- •8 Газовые смеси
- •9 Способы задания смеси газов
- •Определение кажущейся молекулярной массы и параметров состояния смеси
- •24 Теплоемкость
- •10 Первый закон термодинамики
- •11 Энтальпия
- •12 Энтропия
- •14 Термический кпд
- •15 Цикл Карно
- •16 Аналитическое выражение 2-го закона т-ки
- •17 Изменение энтропии в необратимых процессах
- •18 Эксэргия
- •19 Термодинамические процессы
- •Политропный процесс
- •28 Термодинамические процессы в реальных газах и парах Свойства реальных газов
- •32 Водяной пар Основные понятия и определения
- •33 Pv-диаграмма водяного пара
- •34 Тs-диаграмма водяного пара
- •35Is-диаграмма водяного пара
17 Изменение энтропии в необратимых процессах
При
прочих равных условиях работа, совершаемая
необратимым процессом, меньше, чем
обратимым, и, следовательно,
.
Поэтому при наличии в цикле необратимых
процессов:
, (78)
Или, после интегрирования по замкнутому контуру:
. (79)
Пусть, например, в произвольном цикле, изображенном на рисунке 6, процесс 2-4-1 обратимый, а обозначенный пунктирной линией 1-3-2 необратимый.
Рисунок 6 – Цикл
Полученный в результате этих процессов цикл будет необратимым, поскольку один из процессов цикла необратим. Тогда интеграл (79) с учетом выражения (78) можно представить в виде суммы интегралов:
. (80)
Так
как процесс 2-4-1 обратимый, то второй
интеграл, согласно выражению (60), равен
разности
,
поэтому неравенство (80) примет вид:
, (81)
Или, после преобразования:
. (82)
Знак неравенства (82) указывает на то, что в случае необратимого процесса интеграл в правой части его уже не выражает собой разности энтропий, а меньше нее, т.е.
, (83)
где – элементарное изменение энтропии
необратимого процесса.
Таким образом, необратимость процесса 1-3-2 приводит к возрастанию энтропии.
18 Эксэргия
Эксэргия
или техническая
работоспособность
– максимальная работа совершаемая
рабочим телом, если в качестве холодного
источника теплоты принимается внешняя
среда с температурой
.
Различают эксэргию рабочего тела в потоке, эксэргию неподвижного рабочего тела и эксэргию теплоты.
Эксэргией рабочего тела, способной в той или иной мере превращаться в работу, является в случае потока энтальпия, а в случае неподвижного тела – внутренняя энергия.
Рассмотрим
необратимый процесс передачи тепла Q
от горячего
тела с температурой
к холодному
с температурой
.
Считаем, температуры
и
выше
.
В результате этого процесса изменение
энтропии первого тела составит:
. (84)
Знак минус указывает на то, что тепло от первого тела отводится, т.е. энтропия убывает.
Тогда, энтропия второго тела возрастает:
. (85)
Суммарное изменение энтропии системы из двух тел:
. (86)
Из выражения (86) следует, что энтропия данной системы увеличивается.
Максимальное
количество работы за счет тепла Q
может быть получено при осуществлении
в заданном интервале температур цикла
Карно. При этом термический КПД в
интервале от
до
составит:
. (87)
Следовательно, максимальное количество работы будет равно:
. (88)
Максимальное количество работы, которое можно получить от тепла Q после необратимого перехода его второму телу, составит:
. (89)
В результате получается, что рассматриваемый необратимый процесс сопровождается уменьшением работоспособности системы на величину:
. (90)
Сравнивая полученное выражение (90) с уравнением (86) получаем выражение:
. (91)
Формула (91) – это уравнение французского физика Гюи-Стодола. Оно вскрывает физический смысл энтропии и показывает, что необратимые процессы перехода тепла с более высокого на более низкий температурный уровень сопровождаются потерей работоспособности, т.е. деградацией энергии той системы, в которой они происходят, а соответствующее возрастание энтропии пропорционально этой потере работоспособности.
Таким образом, энтропию можно рассматривать как параметр замкнутой системы, увеличение которого является количественной мерой потери работоспособности системы, при протекании в ней необратимых процессов.
Понятие об эксэргии тепла позволяет не только осуществить анализ совершенства тепловых устройств, с позиций первого закона термодинамики, но и оценить потерю работоспособности, обусловленную необратимостью происходящих в них процессов, т.е. оценить работу этих устройств и с позиций второго закона термодинамики.