
- •Перечень экзаменационных вопросов по дисциплине «Типовые элементы и устройства сау»
- •1 Классификация элементов автоматики
- •4 Статические и динамические характеристики измерительных преобразователей
- •5 Унификация и стандартизация измерительных преобразователей
- •6 Электроконтактные датчик
- •7 Потенциометрические датчики
- •8 Тензометрические датчики
- •9 Индуктивные датчики
- •10 Емкостные датчики
- •11 Пьезоэлектрические датчики
- •12 Терморезисторы
- •13 Термоэлектрические датчики
- •14 Электромашинные преобразователи – тахогенераторы
- •15 Электромашинные преобразователи – сельсины
- •16 Электромашинные преобразователи – вращающиеся трансформаторы
- •17 Погрешности измерений
- •18 Причины возникновения систематических погрешностей
- •19 Классификация усилителей
- •20 Характеристики усилителей
- •21 Обратные связи в усилителях
- •22 Усилитель на биполярном транзисторе
- •23 Усилитель напряжения на полевом транзисторе
- •24 Операционные усилители
- •25 Многокаскадные усилители
- •26 Усилители мощности
- •27 Импульсные усилители
- •28 Классификация и принцип действия магнитных усилителей
- •29 Магнитные усилители
- •30 Электромашинные усилители
- •31 Электромагнитные реле
- •32 Контакты реле. Средства дуго- и искрогашения
- •33 Реле времени
- •34 Тепловые реле
- •35 Электромагнитные контакторы
- •36 Схемы блокировки и взаимной блокировки реле
- •37 Магнитные пускатели
- •38 Автоматические выключатели
- •39 Гидравлические насосы и двигатели
- •40 Силовые цилиндры
- •41 Гидравлические усилители
- •42 Распределительные устройства
- •43 Характеристики рабочих жидкостей
- •44 Воздух для пневматических приборов
- •45 Пневматические дроссели и распределители
- •46 Пневматические усилители
- •47 Пневматические исполнительные механизмы и приводы
- •48 Классификация электромагнитов
- •49 Электромагниты переменного тока
- •50 Поляризованные электромагниты
- •51 Электромагнитные муфты
- •52 Исполнительные двигатели постоянного тока
- •53 Исполнительные двигатели переменного тока
- •54 Шаговые двигатели
- •55 Моментные двигатели
- •56 Воздействие электрического тока на организм человека
- •57 Причины поражения электрическим током
- •58 Защита от поражения электрически током
- •59 Оказание первой помощи при поражение электрическим током
- •60 Методы измерения показателей электробезопасности
13 Термоэлектрические датчики
Термоэлектрический
преобразователь (термопара) представляет
собой чувствительный элемент, состоящий
из двух разных проводников или
полупроводников, соединенных электрически,
и преобразующий контролируемую
температуру в ЭДС. Принцип действия
термоэлектрического преобразователя
основан на использовании термоэлектродвижущей
силы, возникающей в контуре из двух
разнородных проводниковA и В, места
соединения (спаи) которых нагреты до
различных температур (рис. 5.18, а). Знак
и значение термоЭДС в цепи зависят от
типа материалов и разности температур
в местах спаев. При небольшом перепаде
Δθ температур между спаями термоЭДС
ЕАВ можно считать пропорциональной
разности температур Δθ:
где KsAB - чувствительность
термопары.
Если
к термопаре подключить милливольтметр
с сопротивлением RH, то по значению
термоЭДС можно определить температуру
(рис. 5.18, б). Чтобы получить достоверные
результаты, необходимо один спай
термопары, называемый рабочим, поместить
в среду с температурой θ1 подлежащей
измерению, а температуру θ0 других -
нерабочих (холодных; свободных) спаев
поддерживать постоянной.
14 Электромашинные преобразователи – тахогенераторы
15 Электромашинные преобразователи – сельсины
Сельсинами называют электрические микромашины переменного тока, обладающие способностью самосинхронизации и применяемые в синхронных системах дистанционной передачи угла в качестве датчиков и приемников. Передача угловой величины в такой системе происходит синхронно, синфазно и плавно. При этом между устройством, задающим угол (датчиком), и устройством, принимающим передаваемую величину (приемником), существуют только электрические соединения в виде линии связи.
Сельсины бывают трехфазные силовые и однофазные, однако в системах управления практически используются только однофазные.
Однофазные сельсины работают в основном в двух режимах. В индикаторном режиме датчик поворачивается принудительно, а приемник устанавливается в согласованное с датчиком положение под воздействием собственного синхронизирующего момента. Этот режим используют в системах контроля угла поворота объекта. Погрешность передачи порядка 0,5°-1,5°.
В трансформаторном режиме датчик поворачивается принудительно, а приемник вырабатывает напряжение, являющееся функцией угла рассогласования. Этот режим наиболее часто используют в системах управления углом поворота объекта.
Для обоих режимов возможны следующие схемы:
а) парная: датчик – приемник;
б) многократная: датчик – несколько приемников;
в) дифференциальная: два датчика- приемник.
Однофазный сельсин может работать как в индикаторном, так и в трансформаторном режимах в качестве датчика и приемника. Однако ввиду специфичности предъявляемых требований выпускаемые сельсины предназначаются для конкретного режима работы.
Основные требования, предъявляемые к дистанционным передачам на сельсинах:
1) высокая статическая и динамическая точности. Статическая точность определяется погрешностью следования в режиме медленного поворота, а динамическая – в режиме вращения с меняющейся по заданному закону угловой скоростью. Погрешность следования дистанционной передачи – это отклонение угла поворота ротора сельсина -приемника от угла поворота сельсина-датчика в положении согласования;
2) способность к самосинхронизации в пределах одного оборота, т.е. свойство системы на сельсинах занимать только одно устойчивое согласованное положение в пределах оборота;
3) сохранение свойства самосинхронизации и заданной точности при высоких угловых скоростях и наличии в системе нескольких приемников.