
- •Перечень экзаменационных вопросов по дисциплине «Типовые элементы и устройства сау»
- •1 Классификация элементов автоматики
- •4 Статические и динамические характеристики измерительных преобразователей
- •5 Унификация и стандартизация измерительных преобразователей
- •6 Электроконтактные датчик
- •7 Потенциометрические датчики
- •8 Тензометрические датчики
- •9 Индуктивные датчики
- •10 Емкостные датчики
- •11 Пьезоэлектрические датчики
- •12 Терморезисторы
- •13 Термоэлектрические датчики
- •14 Электромашинные преобразователи – тахогенераторы
- •15 Электромашинные преобразователи – сельсины
- •16 Электромашинные преобразователи – вращающиеся трансформаторы
- •17 Погрешности измерений
- •18 Причины возникновения систематических погрешностей
- •19 Классификация усилителей
- •20 Характеристики усилителей
- •21 Обратные связи в усилителях
- •22 Усилитель на биполярном транзисторе
- •23 Усилитель напряжения на полевом транзисторе
- •24 Операционные усилители
- •25 Многокаскадные усилители
- •26 Усилители мощности
- •27 Импульсные усилители
- •28 Классификация и принцип действия магнитных усилителей
- •29 Магнитные усилители
- •30 Электромашинные усилители
- •31 Электромагнитные реле
- •32 Контакты реле. Средства дуго- и искрогашения
- •33 Реле времени
- •34 Тепловые реле
- •35 Электромагнитные контакторы
- •36 Схемы блокировки и взаимной блокировки реле
- •37 Магнитные пускатели
- •38 Автоматические выключатели
- •39 Гидравлические насосы и двигатели
- •40 Силовые цилиндры
- •41 Гидравлические усилители
- •42 Распределительные устройства
- •43 Характеристики рабочих жидкостей
- •44 Воздух для пневматических приборов
- •45 Пневматические дроссели и распределители
- •46 Пневматические усилители
- •47 Пневматические исполнительные механизмы и приводы
- •48 Классификация электромагнитов
- •49 Электромагниты переменного тока
- •50 Поляризованные электромагниты
- •51 Электромагнитные муфты
- •52 Исполнительные двигатели постоянного тока
- •53 Исполнительные двигатели переменного тока
- •54 Шаговые двигатели
- •55 Моментные двигатели
- •56 Воздействие электрического тока на организм человека
- •57 Причины поражения электрическим током
- •58 Защита от поражения электрически током
- •59 Оказание первой помощи при поражение электрическим током
- •60 Методы измерения показателей электробезопасности
10 Емкостные датчики
Ёмкостный датчик — преобразователь параметрического типа, в котором изменение измеряемой величины преобразуется в изменение ёмкости конденсатора.
Специальная схема преобразует изменение ёмкости в пороговый сигнал датчика (например сухой контакт). В простейших датчиках это обычно мультивибратор, преобразователь «частота (или скважность)-напряжение» и компаратор. Иногда, если изменение ёмкости в ответ на воздействие невелико, приходится ставить схемы на микроконтроллерах, которые занимаются автоподстройкой чувствительности и нуля датчика.
Ёмкостные датчики получили широкое распространение там, где необходимо контролировать появление слабопроводящих жидкостей, например воды. Это датчики уровня жидкости, датчики дождя в автомобилях, датчики в сенсорных кнопках на бытовой технике (в живых тканях много воды) и т. п.
Существуют также ёмкостные датчики уровня жидкости, широко используемые для измерения количества топлива на летательных аппаратах. Обычно датчик представляет собой пару вставленных друг в друга металлических цилиндров (иногда сложной формы, чтобы обеспечить линейность характеристики датчика при сложной форме бака), погруженных в топливо. Принцип действия датчиков основан на том, что ёмкость прямо пропорциональна диэлектрической проницаемости изолятора, а ε у воздуха и топлива различается (порядка 1 и 1,8 соответственно). В результате при заполнении бака топливом возрастает реактивное сопротивление датчика. Питаются ёмкостные топливомеры, как правило, от общей сети ЛА напряжением 115 В частотой 400 Гц, которое для питания датчиков понижается.
Основные преимущества ёмкосных датчиков: высокий порог чувствительности и небольшая инерционность. Основные недостатки: сильное влияние внешних электромагнитных полей.
Специфическая разновидность датчиков — сенсорные экраны на ёмкостном принципе.
11 Пьезоэлектрические датчики
Работа пьезоэлектрического датчика основана на пьезоэлектрическом эффекте. Пьезоэлектрический эффект был открыт в 1880 г. («пьезо» означает сжимаю). Сущность его заключается в том, что на гранях некоторых кристаллов при их сжатии или растяжении появляются заряды, подобные поляризационным. В качестве материалов для датчиков применяются кварц, титанат бария, сегнетова соль, турмалин и др. Пьезоэлектрические датчики относятся к датчикам генераторного типа (входная величина – сила, выходная – количество электричества).
Различают прямой и обратный пьезоэлектрический эффект. Прямой пьезоэлектрический эффект состоит в том, что под влиянием механических напряжений на гранях некоторых кристаллов появляются электрические заряды. При снятии усилий кристалл возвращается в ненаэлектризованное состояние. Обратный пьезоэлектрический эффект заключается в том, что при внесении пьезокристалла в электрическое поле, силовые линии которого совпадают с направлением пьезоэлектрической оси, происходит изменение геометрических размеров кристалла (сжатие или растяжение).
Прямой пьезоэлектрический эффект используется для измерений быстро протекающих динамических процессов (так как пьезоэлектрические датчики обладают высокой собственной частотой), например давления в стволах различных орудий при выстреле, давления газов в двигателях внутреннего сгорания, давления звуковых колебаний. Большое применение получили пьезоэлектрические адаптеры (звукосниматели), манометры, вибраторы для измерения вибраций машин, измерители ускорений (акселерометры) и многие другие устройства.
Обратный пьезоэлектрический эффект нашел применение, например, в ультразвуковых генераторах, с помощью которых, можно произвести очистку поверхности изделий из металла, стекла и керамики и т. п.
Следует отметить, что выходная мощность, пьезодатчика очень мала, поэтому на его выходе должен быть включен электронный усилитель с большим входным сопротивлением. Усилитель и датчик соединены экранированным кабелем.
Пьезоэлектрические датчики обладают следующими достоинствами:
малыми габаритами,
простотой конструкции,
надежностью в работе,
возможностью измерения быстропеременных нагрузок.
Принцип действия и устройство пьезоэлектрических датчиков
Пьезоэлектрические датчики для статических измерений не используются, так как заряд, возникающий на гранях пьезоэлемента под действием усилий, имеет очень малую величину, что создает опасность разряда его через утечку изоляции. Следовательно, заряд на гранях пластин может сохраниться сколь угодно долго при условии бесконечно большого входного сопротивления измерительной цепи, а это практически невыполнимо. Поскольку утечка зарядов при динамических процессах имеет малое значение (под действием переменных сил количество электричества все время восполняется), то пьезодатчики в основном применяются для измерения динамических величин.