
- •6 Отношения. Унарные, бинарные, тернарные отношения.
- •13 Способы задания нечетких множеств. Операции над нечеткими множествами.
- •Операции над нечеткими множествами
- •15 Логика высказываний.
- •16 Логические операции. Формулы логики высказываний. Логические операции.
- •Формулы логики высказываний
- •17 Равносильность формул.
- •18 Нормальные формы формул, приведение к днф, кнф.
- •19 Совершенная дизъюнктивная и совершенная конъюнктивная нормальные формы.
- •Алгоритм получения сднф по таблице истинности.
- •Алгоритм получения скнф по таблице истинности.
- •20 Булева алгебра. Логические функции одной или нескольких переменных.
- •21 Суперпозиции функций. Полные системы логических функций.
- •22 Минимизация в классе дизъюнктивных нормальных форм.
- •23 Исчисление высказываний и исчисление предикатов.
- •Исчисление предикатов
- •24 Аксиоматические теории. Выводимость формул в исчислении высказываний.
- •25. Теорема дедукции. Предикаты, кванторы.
- •26. Формулы логики предикатов, их равносильность, выполнимость и общезначимость.
- •27. Аксиомы исчисления предикатов.
- •28. Алгебраические структуры. Группы.
- •29. Циклические группы. Группы подстановок. Кольца и поля
- •30. Элементы теории кодирования. Представление о кодировании.
- •31. Расстояние Хемминга.
- •32. Теорема о корректирующей способности кодов.
- •33. Матричное кодирование. Групповые коды.
- •34. Коды Хемминга.
- •35. Элементы комбинаторики. Размещения и сочетания.
- •36 Перестановки и подстановки.
- •37 Разбиения Формула включений и исключений.
- •38 Теория графов. Основные понятия и определения.
- •39 Понятие графа. Виды графов.
- •40 Способы задания графов.
- •41 Смежность, инцидентность.
- •42.Операции над графами. Части графов.
- •43 Связность, компоненты связности.
- •44 Числа графов: цикломатическое, хроматическое, внешней и внутренней устойчивости.
- •45 Поиск маршрутов в графе. Задача о минимальном соединении.
- •46 Задача о кратчайшем пути.
- •47 Эйлеровы цепи и циклы. Гамильтоновы цепи и циклы.
- •48 Транспортные сети. Понятие транспортной сети.
- •49 Поток в транспортной сети. Разрез, пропускная способность разреза.
- •50 Алгоритмы построения максимального потока.
- •1) Процедура помечивания вершин.
- •2) Процедура изменения потока.
27. Аксиомы исчисления предикатов.
Сформулируем аксиомы исчисления предикатов и правила вывода исчисления предикатов. (http://webkonspect.com/?room=group&id=63&labelid=1929)
Исчисление предикатов.
Если выполнить подстановку вместо ПП исчисления высказываний формулы алгебры предикатов, то каждая схема доказательства теоремы и каждая схема вывода заключения сохраняются в исчислении предикатов.
В этом разделе логики выделяют три класса формул:
· Тождественно истинные формулы - при исполнении логических и кванторных операций принимают значение «истины» для всех интерпретаций предметных постоянных, функциональных и предикатных символов. Большинство из них - аксиомы исчисления предикатов. Например: ∃x(F(x))↔¬∀x(¬F(x)).
· Тождественно ложные формулы - при исполнении логических и кванторных операций принимают значение «ложь» для всех интерпретаций предметных постоянных, функциональных и предикатных символов. Например, ∃x(F(x))&∀x(¬F(x)).
· Выводимые формулы - при исполнении логических и кванторных операций принимают значение «истина» не для всех интерпретаций предметных постоянных, функциональных и предикатных символов. Например, ∃x(F(x))→¬∀x(F(x)). Выводимость формулы записывается так: F1,F2,…, Fn|⎯ F, где слева от знака выводимости записывают множество посылок и необходимых аксиом, а справа – заключение F («верно, что F выводимо из посылок и аксиом F1,F2,...,Fn»). Другая форма вывода заключения:где над чертой - множество посылок и аксиом, а под чертой - заключение.
П1.Удаление квантора всеобщности: если выводима формула ∀x(F(x)), то, заменив предметную переменную x на терм t, можно удалить квантор всеобщности и получить выводимую формулу:
П2. Введение квантора всеобщности:
a) если выводима формула F(t), то, заменив терм t на предметную переменную x, можно ввести квантор всеобщности и получить выводимую формулу:
b) если выводима формула (F1(t)→F2(x)) и F1(t) не содержит свободной переменной x, то выводима формула:
П3. Удаление квантора существования: если выводима формула ∃x(F(x)), то, заменив предметную переменную х на предметную постоянную ‘а’, можно удалить квантор существования и получить выводимую формулу:
П4. Введение квантора существования:
a) если выводима формула F(t), то, заменив терм t на предметную переменную x в заданной области интерпретации, можно ввести квантор существования и получить выводимую формулу:
b) если выводима формула F1(x)→F2(t) и F2 не содержит свободной переменной x, то выводима формула:
П5. Формирование ПНФ формулы:
a) если при исполнении логических операций один из предикатов формулы Fi не содержит переменной x, связанной в другом предикате формулы Fj, и формулы выводимы, то выводима одна из формул:
b) если выводимы формулы ∀x(F1(x))∨∀x(F2(x)) и ∃x(F1(x))&∃x(F2(x)), то при смене в левой формуле имени переменной получим также выводимые формулы:
28. Алгебраические структуры. Группы.
Понятие группы
Пусть задано некоторое (конечное или бесконечное) множество G, на котором определена операция умножения, т.е. определен закон, сопоставляющий любой паре a, b элементов из G некий элемент из G называемый произведением a и b и обозначаемый символом a∙b.
Операция умножения удовлетворяет следующим условиям:
1. Условие ассоциативности. Для любых трех элементов a, b и c множества G справедливо соотношение:
(ab)c=a(bc);
2. Условие существования нейтрального элемента. Среди элементов множества G имеется некоторый определенный элемент, называемый нейтральным элементом и обозначаемый символом 1, такой что:
a*1=1*a=a;
3. Условие существования обратного элемента к каждому данному элементу. К каждому данному элементу а множества G можно подобрать такой элемент b того же множества G, что:
ab=ba=1.
Пусть задана какая-нибудь группа G; тогда, если множество H, состоящее из некоторых элементов нашей группы G, образует группу, то группу H называется подгруппой группы G. Элемент b называется обратным к элементу а и обозначается а-1.
Множество G с определенной в нем операцией умножения, удовлетворяющей только что перечисленным трем условиям, называется группой; сами эти условия называются аксиомами группы.
Операция умножения, удовлетворяющая аксиомам группы, иногда называется групповой операцией или групповым законом.
Пусть в группе G, кроме указанных выше трех аксиом, оказывается выполненным еще и следующее условие:
- Условие коммутативности:
ab=ba.
В этом случае группа G называется коммутативной или абелевой группой.
Группа называется конечной, если она состоит из конечного числа элементов; в противном случае она называетсябесконечной.
Число элементов конечной группы называется ее порядком.