Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение / Методичка-Материаловедение.doc
Скачиваний:
319
Добавлен:
16.02.2016
Размер:
2.22 Mб
Скачать

3. Высокопрочный чугун

Это вид чугуна по существу также является серым, но графит в нем имеет не пластинчатую, а почти правильную шаровидную форму. Шаровидный графит – менее сильный концентратор напряжения, чем пластинчатый, и поэтому меньше снижает механические свойства металлической основы. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью. Их получают модифицированием расплава магнием. Магний сводят в жидкий чугун перед разливкой в количестве 0,03-0,07%.

Регулируя состав и условия охлаждения, можно получать ферритную, перлитную или смешанную структуру матриц (рис. 4).

Ферритные чугуны более пластичны по сравнению с перлитными, но уступают им по прочности, твердости и износостойкости.

По своим механическим свойствам (прочности, ударной вязкости) высокопрочные чугуны приближаются к сталям, сохраняя при этом хорошие литейные свойства, способность легко обрабатываться резанием, гасить вибрации, высокую износостойкость. Из этих чугунов отливают шестерни, цилиндры, коленчатые валы, поршни и другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.

Маркируют высокопрочный чугун буквами ВЧ и далее следуют величины предела прочности при растяжении (в кгс/мм2) ВЧ 40, ВЧ 45, ВЧ 80 (ГОСТ 7293-85).

Рис. 4 Схема микроструктуры высокопрочного чугуна:

а - ферритный; б - перлитно-ферритный; в – перлитный.

1 – феррит, 2 - шаровидный графит, 3 – перлит.

4. Ковкий чугун

Ковким называют чугун, в котором выделения графита имеют хлопьевидную форму (рис.5).

Такие выделения ослабляют металлическую основу меньше, чем пластинчатые, но больше, чем шаровидные. Поэтому по своей прочности ковкий чугун занимает промежуточное положение между серым и высокопрочным. Пластичность ковкого чугуна выше, чем у серого, но меньше, чем у высокопрочного.

Для получения ковкого чугуна вначале получают отливки белого чугуна, применяя рассмотренные выше приемы, устраняющие графитизацию (быстрое охлаждение, невысокое содержание углерода и кремния). Полученные отливки (структура – перлит + вторичный цементит + ледебурит, см. рис. 2) подвергают специальному графитизирующему обжигу. Для этого их медленно (20-25 ч) нагревают до 930-1000оС (выше эвтектоидной, но ниже эвтектической температуры) и выдерживают при этой температуре 10-13 ч. В результате нагрева получают аустенит и цементит; последний, однако, является неустойчивым и при длительной выдержке распадается на аустенит и хлопьевидный графит. Далее отливки медленно охлаждают, при этом происходит распад вторичного цементита, образующийся графит присоединяется к уже имеющемуся. При температуре немного ниже эвтектоидной (720-740оС) проводят вторую длительную выдержку, в процессе которой образовавшийся эвтектоидный цементит (цементит, входящий в состав перлита) распадается, давая феррит и дополнительное количество графита. В результате структура чугуна получается полностью равновесной, т.е. состоящей из феррита и графита.

Если после выдержки при 950-1000оС чугуны охладить ускоренно (например, на воздухе), то графитизация эвтектоидного цементита не успеет пройти, и металлическая основа чугуна будет перлитной. Используя промежуточный режим охлаждения, можно получить ферритно-перлитную основу.

Ковкие чугуны обладают хорошим сочетанием прочности и пластичности. При этом ферритные чугуны имеют более высокую пластичность, а перлитные – более высокую прочность, твердость и износостойкость. Отливки из ковких чугунов применяют для деталей, работающих при ударных и вибрационных нагрузках (картеры, редукторы, муфты и т.п.).

Ковкий чугун маркируют буквами КЧ и далее следуют величины предела прочности при растяжении (в кгс/мм2) и относительного удлинения (в %), например, КЧ 35-10, КЧ 60-3.

Рис. 5 Схема микроструктуры ковкого чугуна:

а - перлитно-ферритный; б – ферритный. 1 - перлит; 2 - хлопьевидный графит; 3 - феррит