
- •Ионный обмен Большая советская энциклопедия
- •Адгезия Большая советская энциклопедия
- •Адгезия Материал из Википедии — свободной энциклопедии
- •Окклюзия Большая советская энциклопедия
- •Окклюзия Материал из Википедии — свободной энциклопедии
- •Сокристаллизация, см. Соосаждение.
- •Фильтрация Большая советская энциклопедия
- •Фильтрация Материал из Википедии — свободной энциклопедии
- •Коллаборативная фильтрация
Сорбция
Материал из Википедии — свободной энциклопедии
Абсорбция - объёмное слияние двух веществ, находящихся в разных агрегатных состояниях (напр. жидкости, абсорбирующиеся твёрдыми телами или газами, газы, абсорбирующиеся жидкостями и т.д.).
Адсорбция - физическое сцепление ионов и молекул на поверхности тела другого состояния (напр. реагенты адсорбируются к целой поверхности катализатора).
Абсорбция в химии - физический или химический феномен или процесс, при котором атомы, молекулы или ионы входят в какоё-либо объёмное состояние - газ, жидкость или твёрдое тело. Это процесс, отличный от адсорбции, поскольку молекулы, подвергающиеся абсорбции, забираются по объёму, а не по поверхности (как происходит в случае с адсорбцией). Более общий термин - сорбция, который охватывает процессы абсорбции, адсорбции и ионного обмена. Абсорбция, в основном - это где что-то присоединяет другую субстанцию.[1]
Если абсорбция является физическим процессом, не сопровождаемым другими физическими или химическими процессами, она обычно подчиняется закону распределения Нернста:
«при равновесии отношение концентраций третьего компонента в двух жидких состояниях является постоянной величиной».
Ионный обмен Большая советская энциклопедия
Ионный обмен, обмен ионов в растворах
электролитов (гомогенный И. о.). При
смешении разбавленных растворов
электролитов, например NaCl и KNO3 в смеси
присутствуют ионы Na+, К+, NO3— и Cl—.
Равновесное состояние выразится в этом
случае уравнением:
(реакция двойного обмена). Если одно из веществ, могущих получиться при взаимодействии, диссоциировано меньше других, равновесие сдвигается в сторону образования малодиссоциированного вещества. Равновесие сдвигается также в сторону образования летучего или малорастворимого продукта (если он выделяется из данной фазы) по реакциям:
При выпаривании равновесного раствора прежде всего начинается кристаллизация соли (комбинации ионов), обладающей меньшей растворимостью. Избирательность кристаллизации может быть вызвана также добавлением органических растворителей (спирт, ацетон, диоксан и т. п.).
При гетерогенном И. о. (ионообменная сорбция) обмен происходит между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твёрдой фазы — ионита. При соприкосновении ионита, насыщенного одним ионом, например Н+, с раствором, содержащим другие ионы, например Na+ и Ca2+, происходит обмен ионов между раствором и ионитом: в растворе уменьшаются концентрации Na+ и Ca2+ и появляется эквивалентное количество ионов Н+.
Гетерогенный И. о. имеет место при сорбции из растворов электролитов на некоторых минералах (алюмосиликатах, гидратах окисей металлов, цеолитах), в клетках и мембранах живых организмов и в синтетических ионообменных сорбентах. Гетерогенный И. о. широко применяется для обессоливания воды, идущей для питания котлов паром высоких параметров, в гидрометаллургии, в химической и фармацевтической промышленности (см. Иониты).
К. В. Чмутов.
Ионный обмен Материал из Википедии — свободной энциклопедии
Ионный обмен — это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита. Ионный обмен может происходить как в гомогенной среде (истинный раствор нескольких электролитов), так и в гетерогенной, в которой один из электролитов является твёрдым (при контакте раствора электролита с осадком, ионитом и др.).
Основные принципы ионного обмена
Ионный обмен основан на использовании ионитов – сетчатых полимеров разной степени сшивки, гелевой микро- или макропористой структуры, ковалентно связанных с ионогенными группами. Обменивающиеся ионы называются противоионами. Иониты состоят из неподвижного каркаса - матрицы и функциональных групп - фиксированных ионов, которые жестко прикреплены к матрице и взаимодействуют с противоионами. В зависимости от знака заряда противоионов иониты делят на катиониты и аниониты. Если противоионы заряжены положительно, т.е. являются катионами (например, ионы водорода Н+ или ионы металлов), ионит называют катионитом. Если противоионы заряжены отрицательно, т.е. являются анионами (например, ион гидроксила ОН- или кислотные остатки), ионит называют анионитом.
Кинетика ионного обмена
Кинетика ионного обмена определяет скорость протекания ионообменной.На скорость ионного обмена влияют следующие факторы:
доступность фиксированных ионов внутри каркаса ионита, размер гранул ионита, температура, концентрация раствора и т.д.
Общая скорость процесса ионного обмена может быть представлена как совокупность процессов, происходящих в растворе (диффузия противоионов к зерну и от зерна ионита) и в ионите (диффузия противоионов от поверхности к центру зерна ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, доминирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри зерна ионита. Следовательно, скорость ионного обмена, прежде всего, зависит от размера зерна ионита и увеличивается с уменьшением размера зерна. В зависимости от природы матрицы различают неорганические и органические иониты.