
- •Практическая работа №3
- •Примеры
- •Определенный интеграл
- •Дифференциальные уравнения
- •Первообразная функции и неопределенный интеграл.
- •Основные свойства неопределенного интеграла.
- •Основные формулы интегрирования.
- •Используя формулу (1), получаем
- •10. Задание для самостоятельной работы студента:
- •Литература
Практическая работа №3
«Основы интегрального исчисления. Методы нахождения неопределенных интегралов. Вычисление определенных интегралов»
Цель занятия: Научиться решать примеры и задачи по данной теме.
Вопросы теории (исходный уровень):
Первообразная функции и неопределённый интеграл.
Интегрирование.
Методы нахождения неопределенных интегралов: приведение к табличному виду и метод замены переменной, интегрирование по частям.
Определённый интеграл, его применение для вычисления площадей фигур и работы переменной силы.
Вычисление определенных интегралов, правило Ньютона-Лейбница.
Примеры использования интегрального исчисления в медицинских задачах (самостоятельная подготовка)
Содержание занятия:
1. ответить на вопросы по теме занятия
2. решить примеры
Примеры
Найти интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
15)
|
16)
|
17)
|
18)
|
19)
|
20)
|
21) |
22) |
23) |
24) |
25) |
26) |
27) |
Вычислить интегралы:
1)
|
2)
|
3)
|
4)
|
5)
|
6)
|
7)
|
8)
|
9)
|
10)
|
11)
|
12)
|
13)
|
14)
|
15)
|
16)
|
17)
|
18)
|
19)
|
21)
|
22)
|
23)
|
24)
|
25)
|
26)
|
27)
|
28)
|
29)
|
30)
|
31)
|
32)
|
33)
|
34)
|
35)
|
36)
|
37)
|
38)
|
|
|
Тема
Неопределенный интеграл
Функция F(x), имеющая данную функцию f(x) своей производной или f(x)dx своим дифференциалом, называется первообразной данной функции f(x). Совокупность всех первообразных функций для дифференциала f(x)dx называется неопределенным интегралом и обозначается символом ∫ f(x)dx.
Свойства неопределенного интеграла
∫f(x)dx=F(x)+C
∫[f(x)+φ(x)]dx=∫ f(x)dx+∫φ(x)dx
∫ d(F(x))=F(x)+C
(∫f(x)dx)=f(x)
∫f(x)dx= ∫f(t)dt
d∫f(x)dx=f(x)dx
∫af(x)dx+a∫f(x)dx
Основные интегралы
∫dx=x+C
∫xndx=xn+1/ (n+1) +C (n≠-1)
∫dx/x=ln|x|+C
∫axdx=ax/lna +C
∫exdx=ex+C
∫sin x dx=-cos x +C
∫cos xdx=sin x +C
∫dx/cos2x=tgx+C
∫dx/sin2x=-ctgx+C
∫dx/(1-x2)1/2=arcsinx=-arccosx
∫dx/(1+x2)= arctgx=- arcctgx
Интегрирование по частям
∫ udv = uv—∫ vdu.
Пример
Найти у = ∫ ln хdх.
Полагаем и=lпх, dv = dx, тогда dи =dx/x, v = x
Используя формулу интегрирования по частям, получаем
у = ∫ ln xdx = x ln х-∫ dх = xlnx-x+C
Пример метод непосредственного интегрирования
Найти у= ∫ (1+ 2x2)dx
На основании свойства интеграла суммы запишим
у= ∫ (1+ 2x2)dx = ∫ dx+2 ∫ x2dx =x+2x3/3+C
Пример; метод замены переменной( метод подстановки)
∫tgxdx=∫(sinx/cosx)dx обозначим cosx=t
Продифферинцируем праву и левую часть
-sinxdx=dt найдем dx=dt/(-sinx)
Запишим интеграл через новые переменные
∫(sinx/t) dt/(-sinx) =-∫dt/t= lnt+C или lncosx+C