Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
172
Добавлен:
13.02.2016
Размер:
481.28 Кб
Скачать

Лекция 18.

Основные характеристики ядер атомов.

Радиоактивный распад. Виды распада. Спектры альфа-, бета- и гамма-излучений. Основной закон радиоактивного распада. Период полураспада. Активность и единицы активности. Методы получения радионуклидов.

Взаимодействие ионизирующего излучения с веществом. Линейная плотность ионизации, линейная передача энергии, средний пробег иони­зирующей частицы.

Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов. Физические принципы защиты от ионизирующих излучений. Понятие об основных биологических эффектах ионизирующих излучений.

Физические основы радионуклидных методов диагностики и лучевой терапии.

Основные характеристики ядер атомов.

1.Электрический заряд ядра.Ядра всех атомов заряжены положительно. Заряд определяется числом протоновZ, входящих в состав ядра, и соответствуют порядковому номеру элемента в таблице Менделеева:

qя = Z e,

где qя- заряд ядра,е- положительный заряд, равный заряду электрона.

2. Масса ядра.Массу ядра выражают в атомных единицах массы (а.е.м.). За 1 а.е.м. принята 1/12 массы ядра иотопа углерода с массовым числом 12.1 а.е.м. = (1,66043 0,00031) х 10-27 кг.

Например: mp = 1,00728 а.е.м.,

mn = 1,00867 а.е.м.,

m = 4,00152 а.е.м.

3. Массовое число. Ближайшее к атомной массе атома целое число(А), выраженной в а.е.м. Массовое число равно числу нуклонов в ядре.

А = Z + N, где N - число нейтронов в ядре.

Обозначение ядра: Нижний индекс порядковый номер Z, верхний - массовое число А, элемента Х.

4. Радиус ядра.Радиус ядера вычисляют по приближенной формуле:

(м) или(фм) (1 фм = 10-15м).

5. Спин ядра.- равен сумме спинов нуклонов. Спины протона и нейтрона одинаковы:. Спин ядра, состоящего из четного числа нуклонов равен целому числу или нулю. Например. спин ядра водородаравен, а ядра гелия- нулю.

Ядро, состоящее из нечетного числа нуклонов, имеет спин, равный нечетному числу . Например, спин ядра трития равен, а ядра индия.

6. Магнитный момент ядра P. -выражают в ядерных магнетонах Борая . Магнитный момент протона ~Pmp = 2,79 я, нейтронаPmn=-1,91я;,я.

Знак “” означает, что магнитный момент нейтрона или ядра ориентирован противоположно спину.

Энергию, необходимая для разделения ядра на отдельные нуклоны, называется энергией связи.Есв:Есв = [Zmp + Nmn - mя]c2

1 а.е.м.обладает энергией 931,5 МэВ, тогда:

Есв = [Zmp + Nmn - mя] 931,5,

где массы протона, нейтрона и ядра в а.е.м., а Есв- в МэВ.

Радиоактивность. Взаимодействие ионизирующего излучения с веществом

Одним из распространенных источников ионизирующего излучения является радиоактивный распад атомных ядер. В главе наряду с этим вопросом рассматривается и взаимодействие ионизирующего излучения с веществом.

27.1. Радиоактивность

Радиоактивностью называют самопроизвольный распад неустойчивых ядер с испусканием других ядер или элементарных частиц. Характерным признаком, отличающим ее от других видов ядерных превращений, является самопроизволъность (спонтанность) этого процесса. Различают радиоактивность естественную и искусственную.

Естественная радиоактивность встречается у неустойчивых ядер, существующих в природных условиях. Искусственной называют радиоактивность ядер, образованных в результате различных ядерных реакций. Принципиального различия между естественной и искусственной радиоактивностями нет. Им присущи общие закономерности.

Рассмотрим основные типы радиоактивного распада.

Альфа-распад состоит в самопроизвольном превращении одного ядра в другое ядро с испусканием а-частицы (ядра атома гелия 2Не). Схему альфа-распада с учетом правила смещения (закона сохранения зарядового и массового чисел) записывают в виде

(27.1)

где X и Y— символы соответственно материнского и дочернего ядер. Примером -распада является превращение радона в поло полоний, а полония в свинец

Суммарная масса дочернего ядра и -частицы меньше массы материнского ядра, то же можно сказать относительно их энергий покоя. Разность этих энергий равна кинетической энергии -частицы и дочернего ядра.

При -распаде дочернее ядро может образоваться не только в нормальном, но и в возбужденных состояниях. Так как они принимают дискретные значения, то и значения энергии -частиц, вылетающих из разных ядер одного и того же радиоактивного вещества, дискретны. Энергия возбуждения дочернего ядра чаще всего выделяется в виде -фотонов. Именно поэтому -распад сопровождается -излучением.

Если дочерние ядра радиоактивны, то возникает целая цепочка превращений, концом которой является стабильное ядро.

Бета-распад заключается вовнутриядерном взаимном превращении нейтрона и протона. Различают три вида -распада.

1. Электронный, или -распад, который проявляется в вылете из ядра -частицы (электрона). Энергии -частиц принимают всевозможные значения от 0 до Еmaх, спектр энергий сплошной (рис. 27.1). Это не соответствует дискретным ядерным энергетическим состояниям. В 1932 г. В. Паули высказал предположение о том, что одновременно с -частицей из ядра вылетает еще и другая, нейтральная, с очень малой массой. По предложению Э. Ферми эта частица была названа нейтрино. Позже было установлено, что нейтрино возникает при +-распаде, а при -распаде — антинейтрино.

Энергия, выделяющаяся при -распаде, распределяется между -частицей и нейтрино или антинейтрино.

Схема -распада с учетом правила смещения:

(27.2)

где — обозначение антинейтрино.

Примером -распада может быть превращение трития в гелий:

При  -распаде электрон образуется вследствие внутриядерного превращения нейтрона в протон:

(27.3)

2. Позитронный, или +-распад. Схема +-распада:

(27.4)

где — обозначение нейтрино. Примером +-распада является превращение рубидия в криптон:

При +-распаде позитрон образуется вследствие внутриядерного превращения протона в нейтрон:

(27.5)

3. Электронный, или е-захват. Этот вид радиоактивности заключается в захвате ядром одного из внутренних электронов атома, в результате чего протон ядра превращается в нейтрон:

(27.6)

Схема электронного захвата:

(27.7)

Примером е-захвата может быть превращение бериллия в литий:

В зависимости от того, с какой внутренней оболочки захватывается электрон, иногда различают К-захват, L-захват и т. д. При электронном захвате освобождаются места в электронной оболочке, поэтому этот вид радиоактивности сопровождается характеристическим рентгеновским излучением. Именно по рентгеновскому излучению и был обнаружен электронный захват.

При -распаде возможно возникновение -излучения.

Радиоактивностью являются также спонтанное деление ядер, протонная радиоактивность и др. Понятие радиоактивности иногда распространяют и на превращения элементарных частиц.

Соседние файлы в папке лекции 2 семестр