Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторной работе №2.doc
Скачиваний:
36
Добавлен:
13.02.2016
Размер:
1.5 Mб
Скачать

5.8. Поток энергии и интенсивность волны

Волновой процесс связан с распространением энергии. Количе­ственной характеристикой перенесенной энергии является поток энергии.

Поток энергии волн (Ф) характеризуется средней энергией, пе­реносимой волнами в единицу времени через некоторую поверх­ность. Усреднение должно быть сделано за время, значительно большее периода колебаний.

Единицей потока энергии волн является ватт (Вт).

Найдем связь потока энергии волн с энергией колеблющихся точек и скоростью распространения волны.

Выделим объем среды, в которой распространяется волна, в виде прямоугольного параллелепипеда (рис. 5.21); площадь его основания S, а длина ребра численно равна скорости и совпадает с направлением распространения волны. В соответствии с этим за 1с сквозь площадку S пройдет та энергия, которой обладают ко­леблющиеся частицы в объеме параллелепипеда Sv. Это и есть по­ток энергии волн:

(5.53)

гдесредняя объемная плотность энергии колебательного движения (среднее значение энергии колебательного движения частиц, участвующих в волновом процессе и расположенных в 1 м3).

Поток энергии волн, отнесенный к площади, ориентиро­ванной перпендикулярно направлению распространения волн, называют плотностью потока энергии волн, или интенсивностью волн:

(5.54)

Единицей плотности потока энергии волн яв­ляется ватт на квадратный метр (Вт/м2).

Энергия, переносимая упругой волной, складывается из по­тенциальной энергии деформации и кинетической энергии ко­леблющихся частиц. Приведем без вывода выражение для сред­ней объемной плотности энергии волн:

(5.55)

где А — амплитуда колебаний точек среды, — плотность. Подставляя (5.55) в (5.54), имеем

Таким образом, плотность потока энергии упругих волн про­порциональна плотности среды, квадрату амплитуды колебаний частиц, квадрату частоты колебаний и скорости распростране­ния волны.

5.9. Ударные волны

Один из распространенных примеров механической волны — звуковая волна (см. гл. 6). В этом случае максимальная скорость колебаний отдельной молекулы воздуха составляет несколько сантиметров в секунду даже для достаточно большой интенсив­ности, т. е. значительно меньше скорости распространения волны (скорость звука в воздухе около 300 м/с). Это соответствует, как принято говорить, малым возмущениям среды.

Однако при больших возмущениях (взрыв, сверхзвуковое дви­жение тел, мощный электрический разряд и т. п.) скорость колеб­лющихся частиц среды может уже стать сравнимой со скоростью звука, возникает ударная волна.

При взрыве высоконагретые продукты, обладающие большой плотностью, расширяются и сжимают слои окружающего возду­ха. С течением времени объем сжатого воздуха возрастает. Тонкую переходную область, которая отделяет сжатый воздух от невозмущенного, в физике называют ударной волной. Схематич­но скачок плотности газа при распространении в нем ударной вол­ны показан на рис. 5.22, а. Для сравнения на этом же рисунке показано изменение плотности среды при прохождении звуковой волны (рис. 5.22, б).

Ударная волна может обладать значительной энергией, так, при ядерном взрыве на образование ударной волны в окружаю­щей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.