Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная работа№5.doc
Скачиваний:
51
Добавлен:
13.02.2016
Размер:
429.57 Кб
Скачать

Поверхностное натяжение равно отношению силы поверхност­ного натяжения к длине отрезка, на котором действует эта сила:

(7.22)

Из школьного курса физикиизвестно, что оба определения, (7.21) и (7.22), тождественны. Приведем значения поверхностно­го натяжения для некоторых жидкостей при температуре 20 °С (табл. 15).

Таблица 15

Жидкость

а, Н/м

Жидкость

а, Н/м

Вода

0,0725

Ртуть

0,47

Желчь

0,048

Спирт

0,022

Молоко

0,05

Сыворотка крови

0,06

Моча

0,066

Эфир

0,017

Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при уве­личении температуры. Снижения поверхностного натяжения можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя.

Смачивание и несмачивание. Капиллярные явления

На границе соприкосновения различных сред может наблю­даться смачивание или несмачивание.

На рисунках показана капля жидкости на поверхности другой, не смешивающейся с ней жидкости (рис. 7.9) и на поверхности твердого тела (рис. 7.10 и 7.11). На поверхностях раздела каждых двух сред (1 и 3, 2 и 1, 3 и 2) действуют силы поверхностного на­тяжения (показаны стрелками). Если эти силы разделить на дли­ну окружности капли (границы трех сред), то получим соответ­ственно σ13, σ21, σ32.

Угол 9 между смачиваемой поверхностью и касательной к по­верхности жидкости, отсчитываемый через нее, называют крае­вым.

За меру смачивания принимают величину

(7.23)

Если σ32 < σ13 (см. рис. 7.10), то θ < π/2, и жидкость смачивает твердое тело, поверхность которого в этом случае называется гид­рофильной. В случае σ32 < σ13 (см. рис. 7.11) θ > π/2, жидкость не смачивает тело, поверхность его в этом случае называют гид­рофобной. Несмачивающая жидкость не протекает через малые отверстия в твердом теле. При σ32 - σ13 > σ21 краевой угол определить нельзя, так как cos 6 не может быть больше единицы. В этом случае капля растекается по поверхности твердого тела до тех пор, пока не покроет всей его поверхности или пока не образу­ется мономолекулярный слой. Такой случай является идеальным смачиванием

. К нему с некоторым приближением можно отнести растекание спирта или воды по чистой поверхности стек­ла, нефти по воде и пр.

Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает дополнительное по отно­шению к внешнему давление Δр. Поверхностный слой подобен уп­ругой оболочке, например резиновой пленке. Результирующая сил поверхностного натяжения искривленной поверхности на­правлена в сторону вогнутости (к центру кривизны). В случае сфе­рической поверхности, радиус кривизны которой r, дополнитель­ное давление

Δр = 2 σ/r. (7.24)

Искривление поверхности (мениск), в частности, возникает в узких (капиллярных) трубках в результате смачивания или не­смачивания жидкостью их поверхности. При смачивании образу­ется вогнутый мениск (рис. 7.12). Силы давления направлены от жидкости наружу, т. е. вверх, и обусловливают подъем жидкости в капилляре. Это равновесное состояние, показанное на рисунке, наступает тогда, когда давление ρgh уравновесит Δр.

Из рис. 7.12 видно, что

где R- радиус капилляра

Поэтому [(см. (7.24)] получаем

(7.25)

Тогда

откуда высота поднятия жидкости в капилляре

(7.26)

т. е. зависит от свойств жидкости и материала капилляра, а также от его радиуса.

В случае несмачивания cos θ < 0 и формула (7.26) покажет высоту опус­кания жидкости в капилляре.

Капиллярные явления определя­ют условия конденсации паров, ки­пения жидкостей, кристаллизации и т. п. Так, например, на молекулу

пара (рис. 7.13; точка А) над вогнутым ме­ниском жидкости действует больше моле­кул жидкости и, следовательно, большая сила, чем при выпуклом мениске (показа­ны стрелками). Это видно из рис. 7.13, на котором штриховыми линиями условно по­казаны сферы молекулярного действия, а заштрихованные участки — объемы жид­кости, молекулы которых притягивают вы­деленную молекулу пара. В результате это­го возникает капиллярная конденсация в смачиваемых тонких трубках даже при

сравнительно малой влажности воздуха. Благодаря этому пористые вещества могут задерживать значительное количество жидкости из паров, что приводит к увлажнению белья, ваты в сырых помещени­ях, затрудняет сушку гигроскопических тел, способствует удержа­нию влаги в почве и т. п. Наоборот, несмачивающие жидкости не проникают в пористые тела. С этим связана, например, непроница­емость для воды перьев птиц, смазанных жиром.

Рассмотрим поведение пузырька воздуха, находящегося в ка­пилляре с жидкостью. Если давление жидкости на пузырек с раз­ных сторон одинаково, то оба мениска пузырька будут иметь оди­наковый радиус кривизны, и силы дополнительного давления будут уравновешивать друг друга Fv = —F2 (рис. 7.14, а). При из­быточном давлении с одной из сторон, например при движении жидкости, мениски деформируются, изменятся их радиусы кри­визны (рис. 7.14, б), дополнительное давление Ар с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пузырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут проис­ходить в кровеносной системе человека.

Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функци­ональному расстройству или даже летальному исходу. Так, воз­душная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, пре-

пятствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях.

Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков и космонавтов при разгерметизировании кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом газов крови из растворенного состояния в свободное — газообраз­ное — в результате понижения окружающего атмосферного дав­ления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловли­вает основную часть общего давления газов в крови и не участвует в газообмене организма и окружающего воздуха.