
- •38 Генераторы с внешним возбуждением
- •7.1 Классификация генераторов
- •7.4 Импульсный метод
- •7.5 Радиоимпульсный метод
- •8.3 Энергетическое равновесие в аг
- •9 Режимы работы и возбуждения аг
- •9.1 Комплексное уравнение аг
- •9.2 Условие баланса амплитуд
- •9.3 Условие баланса фаз
- •9.4 Режим мягкого самовозбуждения аг
- •9.5 Режим жесткого самовозбуждения
- •10 Устойчивость работы аг
- •10.1 Колебательные характеристики
- •10.2 Линии обратной связи
- •10.3 Определение стационарной амплитуды колебаний
- •10.4 Lc автогенератор с автоматическим смещением
- •11 Трехточечные lc-автогенераторы
- •11.1 Обобщенная трехточечная схема
- •11.2 Генератор с автотрансформаторной обратной связью
- •11.3 Автогенератор с емкостной обратной связью
- •12 Стабилизация частоты lc-генераторов
- •12.1 Общие сведения
- •12.2 Причины нестабильности частоты
- •12.3 Методы стабилизации частоты:
- •12.4 Кварцевая стабилизация частоты
- •13.1 Цепочный rc-автогенератор
- •14 Формирование двухполосных ам сигналов
- •14.1 Общие сведения
- •14.2 Однотактные модуляторы
- •14.2 Балансный (двухтактный) модулятор
- •15 Формирование однополосных ам сигналов
- •15.1 Методы формирования ом сигнала
- •16 Формирование чм и фм сигналов
- •16.1 Прямой метод чм
- •16.2 Прямой метод фм
- •16.3 Косвенный метод чм
- •16.4 Косвенный метод фм
- •17 Преобразование частоты
- •17.1 Применение преобразования частоты
- •17.2 Принцип преобразования частоты
- •17.3 Схемное построение преобразователей частоты и их виды
- •17.4 Транзисторный преобразователь частоты
- •18 Формирование импульсно-модулированных сигналов
- •18.1 Амплитудно-импульсная модуляция
- •18.2 Частотно-импульсная модуляция
- •18.3 Широтно-импульсная и фазо-импульсная модуляция
- •19 Формирование манипулированных сигналов
- •19.1 Общие сведения
- •19.2 Формирование офм
- •20 Некогерентное детектирование ам сигналов
- •20.1 Общие сведения
- •20.2 Квадратичный диодный ад
- •21 Синхронное (когерентное) детектирование ам сигналов
- •22 Детектирование чм сигналов
- •22.1 Принцип работы частотных детекторов
- •22.2 Частотно-амплитудные детекторы
- •23 Детектирование фм сигналов
- •23.1 Однотактный диодный фд
- •23.2 Балансный диодный фд
- •24 Детектирование манипулированных сигналов
- •25 Детектирование импульсно-модулированных (им) и декодирование цифровых сигналов
- •25.1 Детектирование им сигналов
- •25.2 Декодирование цифровых сигналов
- •26 Помехоустойчивость приема сигналов
- •26.1 Основные понятия
- •26.2 Количественная мера пу
- •26.3 Группы методов повышения пу систем связи
- •27 Оптимальный прием сигналов
- •27.1 Ощие сведения
- •27.2 Некогерентный прием
- •27.3 Неоптимальный прием
21 Синхронное (когерентное) детектирование ам сигналов
Диодный детектор дает хорошие результаты при детектировании АМ сигнала с высоким уровнем (несколько вольт). Для детектирования АМ сигналов с малым уровнем (десятые доли вольта или меньше), БМ и ОМ сигналов применяют синхронное (когерентное) детектирование, при котором напряжение на выходе детектора зависит не только от амплитуды, но и от фазы входного сигнала.
Синхронным называется детектирование высокочастотных колебаний, при котором используется специально выделенное несущее колебание.
Синхронный детектор (СД) можно рассматривать как преобразователь частоты при частоте гетеродина, совпадающей с частотой сигнала. Поэтому он называется синхронным.
Рисунок 21.1 – Структурная схема СД.
- опорный генератор
(гетеродин). Формирует (генерирует)
опорный сигнал, совпадающий по частоте
и фазе с несущей АМ сигнала.
ФАПЧ – система фазовой автоподстройки частоты опорного генератора. Выделяет несущую сигнала, которая используется для подстройки частоты и начальной фазы гетеродина.
- перемножитель.
Перемножает АМ и опорный сигналы. Сигнал
на его выходе:
В качестве перемножителя может быть использован балансный модулятор, специальный аналоговый перемножитель на микросхеме.
ФНЧ – фильтр нижних частот. Выделяет низкочастотные составляющие этого сигнала. Сигнал на выходе ФНЧ:
В спектре БМ и ОМ сигналов несущая отсутствует. При этом для получения опорного сигнала применяются два технических решения:
- вместе с БМ и ОМ сигналами передается пилот-сигнал, представляющий собой остаток несущей;
- при полностью подавленной несущей используется местная несущая, формируемая на приеме специальным высокостабильным генератором несущей.
Достоинства:
- такое детектирование линейное, т.е. имеется прямая пропорциональная зависимость между значениями выходного напряжения детектора и огибающей входного АМ сигнала;
- СД можно использовать для детектирования ФМ сигналов, т.к. он реагирует на фазу входного сигнала;
- отсутствие эффекта подавления слабого сигнала сильной помехой (равенство отношений сигнал-помеха на входе и выходе детектора);
- СД характеризуется частотной избирательностью (чем больше разность частот сигнала и помехи, тем меньшее напряжение помехи создается на выходе СД).
Недостаток:
- значительные технические трудности обеспечения синхронности и синфазности опорного и принимаемого сигналов.
При несовпадении фаз выходной сигнал оказывается умноженным на косинус фазовой ошибки:
При
напряжение максимально; при
амплитуда сигнала занижается; а при
напряжение равно нулю, что делает
невозможным прием сигнала.
При несовпадении
частот сигнал демодулятора оказывается
умноженным на гармоническое колебание
с разностной частотой (начинает
пульсировать с частотой биений
):
22 Детектирование чм сигналов
22.1 Принцип работы частотных детекторов
Частотный детектор (ЧД) – устройство, напряжение на выходе которого зависит от частоты входного сигнала.
Для восстановления модулирующего сигнала из ЧМ сигнала только нелинейного устройства недостаточно, т.к. в реакции любого НЭ на ЧМ сигнал имеются только модулированные гармоники частоты несущей и нет низкочастотных составляющих.
Для доказательства рассмотрим нелинейное преобразование ЧМ сигнала. Пусть ВАХ НЭ аппроксимирована полиномом:
,
где
.
Оказывается, что ток НЭ не содержит информационной низкочастотной компоненты:
Следовательно, требуется дополнительное преобразование ЧМ сигнала. ЧД работают по принципу преобразования ЧМ в другой вид модуляции с последующим детектированием преобразованного вида модуляции. В зависимости от характера преобразований ЧМ различают частотно-амплитудные, частотно-фазовые и частотно-импульсные детекторы.
В частотно-амплитудных детекторах изменение частоты сигнала преобразуется в изменение амплитуды, которое выделяется АД. В частотно-фазовых детекторах изменение частоты преобразуется в изменение фазового сдвига между двумя напряжениями с последующим фазовым детектированием. В частотно-импульсных детекторах ЧМ сигнал преобразуется в один из видов импульсной модуляции с последующим детектированием с помощью ФНЧ или счетной схемы.