
- •2.. Ортонормированный базис. Обобщенный ряд Фурье.
- •I.Свойство линейности.
- •II. Теорема о сдвигах.
- •IV.Теорема о спектре производной и неопределённого интеграла.
- •V. Теорема о свёртке.
- •VI.Теорема Планшереля
- •5.. Спектры модулированных сигналов.
- •6... Аналитический сигнал. Основные понятия и определения. Спектр аналитического сигнала
- •7… Преобразования Гильберта и его свойства. Применение преобразования Гильберта.
- •1) Преобразования Гильберта для гармонических сигналов
- •8... Автокорреляционная функция и ее свойства. Связь автокорреляционной функции и энергетического спектра сигнала.
- •9.. Взаимокорреляционная функция и ее свойства. Связь взаимокорреляционной функции и взаимного энергетического спектра.
- •10.. Дискретное преобразование Фурье. Свойства дискретного преобразования Фурье. Обратное дискретное преобразование Фурье.
- •11 Алгоритм быстрого преобразования Фурье. Число вычислительных операций. Сравнение дискретного и быстрого преобразования Фурье.
- •13.. Стационарные и эргодические случайные процессы.
- •14 ..Спектральные представления случайных процессов. Теорема Винера-Хинчина.
- •15 Белый шум и его свойства. Гауссовский случайный процесс.
- •17.. Шумоподобные сигналы и их свойства. Применение шумоподобных сигналов.
- •19.. Модуляция шумоподобных сигналов по форме и их детектирование.
- •20.. Основные положения линейной теории разделения сигналов. Структурная схема системы многоканальной передачи информации.
- •21.. Фазовое разделение сигналов.
- •22 Разделение сигналов по форме. Системы подвижной связи сдма.
- •23.. Информационные характеристики дискретных сообщений и сигналов.
- •24.. Взаимная информация и ее свойства.
- •25.. Пропускная способность каналов связи.
- •26 ..Информация в непрерывных сигналах. Дифференциальная энтропия.
- •27.. Информация в непрерывных сообщениях. Эпсилон-энтропия.
- •28.. Задача оптимального приема дискретных сообщений. Элементы теории решений.
- •29.. Критерии оптимизации приема дискретных сообщений.
- •30.. Алгоритм оптимального приема дискретных сообщений при полностью известных сигналах (Когерентный прием).
- •31.. Реализация алгоритма оптимального когерентного приема на основе корреляторов
- •33 Потенциальная помехоустойчивость оптимального когерентного приемника дискретных сообщений.
- •34.. Сравнение по помехоустойчивости систем когерентного приема с различными видами дискретной модуляции.
- •35.. Оптимальный прием дискретных сообщений с неопределенной фазой (Некогерентный прием).
- •36 Помехоустойчивость систем с различными видами дискретной модуляции при некогерентном приеме.
- •37 Прием дискретных сообщений в каналах с замираниями.
- •38 Основные принципы цифровой фильтрации
- •39 Характеристики и свойства цифровых фильтров. Алгоритм линейной цифровой фильтрации.
- •40 Трансверсальные (нерекурсивные) цифровые фильтры
- •41 Рекурсивные цифровые фильтры.
- •42 Устойчивость цифровых фильтров
- •43 Понятие вейвлет-преобразования. Основные вейвлеты, применяемые в системах связи.
- •44 Непрерывное и дискретное вейвлет-преобразования.
- •16.2 Дискретный вейвлет-анализ.
- •16.3 Непрерывное вейвлет-преобразование
39 Характеристики и свойства цифровых фильтров. Алгоритм линейной цифровой фильтрации.
Алгоритм
Математическая теория цифровых фильтров переносит на случай дискретных сигналов все основные положения теории линейных систем, преобразующих непрерывные сигналы.
Как известно, линейная стационарная система преобразует непрерывный входной сигнал x(t) таким образом, что на ее выходе возникает колебание y(t),равное свертке функции x(t) и импульсной характеристики h(t):
Линейный
цифровой фильтр, по определению, есть
дискретная система (физическое устройство
или программа для компьютера), которая
преобразует последовательность
числовых отсчетов входного сигнала в
последовательность
отсчетов выходного сигнала:
или сокращенно
Линейный цифровой фильтр обладает тем свойством, что сумма любого числа входных сигналов, умноженных на произвольные коэффициенты, преобразуется в сумму его откликов на отдельные слагаемые, т.е. из соответствий
следует, что
При
любых коэффициентах
Для
того, чтобы обобщить формулу (14.3) на
случай дискретных сигналов, вводят
понятие импульсной
характеристики
ЦФ. По определению, она представляет
собой дискретный сигнал ,
который является реакцией ЦФ на «единичный
импульс» (1,0,0,0,…):
Линейный ЦФ стационарен, если при смещении входного единичного импульса на любое число интервалов дискретизации импульсная характеристика смещается таким же образом, не изменяясь по форме. Например:
,
,
. . . . . . . . . . . . . . . . .
Рассмотрим, каким образом из свойств линейности и стационарности вытекает наиболее общий алгоритм линейной цифровой фильтрации. Пусть
- некоторый сигнал на входе ЦФ с известной
импульсной характеристикой. Используя
соотношения (14.5) и (14.7), можно записать
m
–й отсчет выходного сигнала
:
Формула (14.8), играющая ведущую роль в теории линейной цифровой фильтрации, показывает, что выходная последовательность есть дискретная свертка входного сигнала и импульсной характеристики фильтра. Смысл этой формулы прост и нагляден: в момент каждого отсчета ЦФ проводит операцию взвешенного суммирования всех предыдущих значений входного сигнала, причем роль последовательности весовых коэффициентов играют отсчеты импульсной характеристики. Иными словами, ЦФ обладает некоторой «памятью» по отношению к прошлым входным воздействиям.
Практический
интерес представляют лишь физически
реализуемые ЦФ, импульсные характеристики
которых не могут стать отличными от
нуля в отсчетных точках, предшествующих
моменту подачи входного импульса.
Поэтому для физически реализуемых
фильтров коэффициенты
обращаются в нуль и суммирование в
(14.8) можно распространить на все
положительные значения индекса k:
Расчет
важнейшей характеристики ЦФ – частотного
коэффициента передачи – удобно проводить,
используя методы z-преобразований.
Сопоставим дискретным сигналам ,
,
их z-преобразования
X(z),
Y(z),
H(z)
соответственно. Выходной сигнал фильтра
есть свертка входного сигнала и импульсной
характеристики, поэтому [см. формулы
(5.15)] выходному сигналу отвечает функция
Системной функцией стационарного линейного ЦФ называется отношение z-преобразования выходного сигнала к z-преобразованию сигнала на входе. Соотношение (14.10) устанавливает, что системная функция фильтра
есть z-преобразование импульсной характеристики.