Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Екологія

.pdf
Скачиваний:
40
Добавлен:
12.02.2016
Размер:
1.36 Mб
Скачать

Суть циклонного процесу полягає в тангенціальному поданні потоку газу, що підлягає очищенню, крізь вхідний патрубок 1. Завдяки тангенціальному введенню і наявності центральної вивідної труби 4 потік починає обертатися навколо неї, здійснюючи при проходженні крізь апарат декілька обертів. Під впливом відцентрової сили зважені частинки забрудненого газу відкидаються на стінки внутрішньої поверхні корпусу 7, і далі під дією сили тяжіння потрапляють в конічне дно і видаляються через нижній патрубок. Циклонні сепаратори ефективно очищають гази, що містять часточки розміром не менше ніж 25 мкм. Коефіцієнт корисної дії циклонів залежить від концентрації пилу і розмірів його часточок. Середня ефективність знепилення газів у циклонах становить 78–86 % для пилу розміром 30–40 мкм. Основним недоліком циклонів є значне абразивне спрацювання частин апарата пилом. Тому ці частини вкривають синтетичними матеріалами або стійкими до стирання сплавами, а це підвищує вартість конструкції апарата.

Рис. 5.4. Циклон типу УЦ-38:

1 – патрубок подачі забрудненого газу;

2 – патрубок для видалення очищеного газу;

3 – кришка; 4 – центральна труба; 5 – циліндр; 6 – опора; 7 – конус.

Фільтрування – процес розділення неоднорідних сумішей за допомогою пористих перегородок різної щільності і товщини, які затримують дисперсну фазу і пропускають суцільну фазу. Апарати, які використовуються для цього процесу, називаються фільтрами. Основним елементом фільтрів є фільтрувальні перегородки; від нихзалежить продуктивність фільтра та чистота фільтрату.

61

Рис. 5.5. Конструктивна схема зернистого фільтра

знерухомим фільтрувальним шаром:

1– корпус; 2 – насипні фільтрувальні шари, 3 – вібратор; 4 – пружини; 5 – бункер для пилу;

6 – вхідний патрубок запиленого газу; 7 – продувний патрубок; 8 – камера очищеного газу;

9 – вихідний патрубок для очищеного газу

Очищення від грубодисперсного пилу здійснюють у зернистих фільтрах (рис. 5.5), заповнених коксом, піском, гравієм.

Рис. 5.6. Конструктивна схема рукавного фільтра:

1 – корпус; 2 – верхня решітка; 3 – рукав; 4 – газохід запилених газів; 5 – колектор; 6 – клапан; 7 – продуктивний колектор; 8 – патрубок очищених газів; 9 – струшувальний пристрій

62

Упромислових умовах застосовують рукавні фільтри (рис. 5.6). Вони мають форму тканинних мішків або кишень, що працюють паралельно, і їх очищують струшуванням або продуванням повітря. Такі фільтри використовуються для очищення неагресивних, не схильних до злипання й утворення вибухонебезпечних сумішей та конденсату газопилових сумішей від твердих частинок при температурі до 300°С. Як фільтрувальний матеріал використовуються бавовняні, шерстяні й лавсанові тканини, що мають високу міцність та підвищену хімічну й теплову стійкість.

Суміш повітря, пилу та дрібних фракцій матеріалів всмоктується у нижню частину фільтра. Грубодисперсні частинки і пил збираються в приєднаних до цієї системи ящиках чи пластикових мішках для частого і швидкого видалення. Тонкодисперний пил збирається у верхній частині фільтрувальних рукавів.Чисте повітря виходить крізь вентиляційні отвори. Головною перевагою рукавних фільтрів є висока ефективність очищення – вона досягає 99 % для всіх розмірів частинок.

Для тонкого очищення застосовують також керамічні, пластмасові або скляні фільтри: ефективність пиловловлювання в них може досягати 99,99 %,

атемпература очищуваного газу – 500 °С.

Уволокнистих фільтрах як фільтрувальну поверхню використовують шари волокнистого матеріалу різної товщини: папір, картон, полімерні смоли тощо. Фільтри бувають тонкота грубоволокнисті та глибокі.

Волокнисті фільтри тонкого очищення використовуються в промисловій мікробіології, в хіміко-фармацевтичній та радіоелектронній галузях, атомній енергетиці; вони дозволяють очищати значні об’єми газів від твердих частинок розміром 0,05...0,5 мкм та радіоактивних аерозолів. Ступінь очищення 99 %, швидкість фільтрування 0,01...0,15 м/с.

Конструктивна схема рамного волокнистого фільтра тонкого очищення подана на рис. 5.7. Фільтрувальний матеріал у вигляді стрічки вкладається між П-подібними рамками, які під час складання чергуються відкритими та закритими сторонами в протилежних напрямках. Між сусідніми шарами встановлюють гофровані роздільники.

Грубоволокнисті фільтри використовуються для грубого або попереднього очищення.

Глибокі багатошарові фільтри застосовуються для очищення технологічного газу й вентиляційного повітря від радіоактивних частинок. Конструктивно вони виконуються з глибокого шару грубих волокон. Після 10 – 20 років експлуатації такі фільтри захоронюють.

Одним із досконалих методів очищення газів від завислих частинок пилу

йтуману є очищення за допомогою електричних фільтрів (рис. 5.8), які

63

дають можливість вловити до 99 % частинок. Пиловловлення в електрофільтрах є складним фізичним процесом, який передбачає гравітаційне, інерційне, дифузійне та електростатичне осадження.

Рис. 5.7. Конструктивна схема волокнистого фільтра: 1 – бокова стінка; 2 – фільтрувальний матеріал;

3 – роздільник; 4 – рамка П-подібна

Основними елементами електричного фільтра є коронувальний 1 та осаджувальний 2 електроди, які утворюють неоднорідне електричне поле 3 (рис. 5.9). Коронувальні електроди 1 ізольовані від землі, а осаджувальні електроди 2 заземлені. До коронувальних електродів підводиться випрямлений струм негативної полярності напругою 5080 кВ, а осаджувальні електроди підключені до позитивного полюса. Коронувальні електроди виконують у вигляді тонкого дроту, а осаджувальні електроди виготовляють у вигляді циліндричних або шестигранних труб та профільованих пластин.

Рис. 5.8. Конструктивна схема електрофільтра: 1 – корпус; 2 – газорозподільна решітка; 3 – система коронувальних електродів;

4 – осаджувальні електроди

64

Гази в електричних фільтрах очищують так. Забруднені гази пропускають крізь неоднорідне електричне поле 3, що утворюється між коронувальним 1 та осаджувальним 2 електродами. Внаслідок дії електричного поля вільні електрони і позитивно заряджені молекули починають переміщуватися в напрямку силових ліній поля.

Рис. 5.9. Принцип роботи електрофільтра:

1– коронувальний електрод; 2 – осаджувальний електрод; 3 – електричне поле; 4 – заряджена зона; 5 –шар пилу

Напрямок руху кожного заряду залежить від його знака. Іони та електрони, стикаючись з нейтральними газовими молекулами, іонізують їх; внаслідок цього вони рухаються до протилежно заряджених електродів і осідають на них.

Рис. 5.10. Конструктивна схема форсункового протиструминного скрубера: 1 – корпус; 2 – патрубок подачі запиленого газу; 3 – водопровід;

4 – патрубок відведення очищення газу; 5 – форсунки для розпилення води; 6 – газорозподільна решітка; 7 – бункер для шламу

65

Умокрих пиловловлювачах запилений газ зрошується рідиною або контактує з нею. До апаратів такого типу належать скрубери (рис. 5.10) – циліндричні башти з металу, цегли чи залізобетону.

Скрубери працюють за принципом протитечії: газ рухається знизу вгору,

апоглинальна рідина (найчастіше вода) розпилюється форсунками згори вниз. Швидкість газу в скруберах дорівнює 0,6…1,2 м/с. Ефективність очищення газів залежить від змочуваності пилу і досягає 96–98 %. Для вловлювання важкозмочуваного пилу, наприклад вугільного, у воду додають поверхневоактивну речовину (ПАР). Скрубери можна застосовувати для холодних і гарячих газів, які не містять токсичних речовин (кислот, хлору тощо), оскільки вони видаляються в атмосферу разом з очищеним газом у вигляді туману.

Убарботажно-пінних пиловловлювачах (рис. 5.11) запилений газ пропускають крізь рідину (воду). Їх доцільно використовувати для очищення гарячих газів з частинками пилу розміром понад 5 мкм. Барботаж використовують також у пінних апаратах. Для створення піни у воду додають ПАР. Ефективність очищення в цих апаратах досягає 97–99 %.

Рис. 5.11. Конструктивні схеми барботажно-пінних пиловловлювачів: 1 – корпус, 2 – шар рідини та піни; 3 – решітка

Конструктивна схема ударно-інерційного газопромивача типу скрубера Дойля подана на рис. 5.12. Контакт газу з рідиною здійснюється внаслідок удару газового потоку об поверхню рідини. Газ подається по трубі зі швидкістю 1520 м/с, яка на виході з конічного сопла досягає 3555 м/с. Відстань між соплом та поверхнею рідини не перевищує 1020 мм. Спінена газорідинна суспензія, що утворилася внаслідок удару, пропускається крізь отвори різної конфігурації.

Недоліком мокрого очищення газів є те, що вловлений пил перетворюється на мокрий шлам. Для видалення останнього потрібно будувати

66

шламову каналізацію, а це здорожує конструкцію. Під час очищення деяких газів можлива лужна або кислотна корозія. Значно погіршуються умови розсіювання через заводські труби відхідних газів, зволожених під час охолодження в апаратах цього типу.

Рис. 5.12. Конструктивна схема ударно-інерційного скрубера Дойля: 1 – корпус; 2 – труба для подачі забрудненого газу; 3 – конічне сопло; 4 – перегородки; 5 – штуцер для подачі рідини

До фізико-хімічних методів очищення газових викидів належать абсорбція і адсорбція. Абсорбція – це процес хімічного осадження або зв'язування забруднювальних речовин під час пропускання очищуваного газу крізь рідкий поглинач. Апарати для такого очищення називають абсорберами. В цих апаратах очищуваний газ і абсорбувальна рідина рухаються назустріч один одному. Контактування газу з рідиною відбувається на змоченій поверхні насадки, по якій стікає зрошувальна рідина (рис. 5.13).

Рис. 5.13. Конструктивна схема насадкового адсорбера: 1 – корпус; 2 – опорна решітка; 3 – насадка;

4 – зрошувальний пристрій

67

Абсорбцію застосовують для очищення повітря і відхідних газів, що містять токсичні забруднення – кислотні тумани, оксиди карбону (II) і (IV), ціанідну або ацетатну кислоти, сірчистий газ, оксиди нітрогену, різні розчинники тощо. Як поглинач використовують суспензії, що містять оксиди магнію і кальцію або вапняк:

СаО + СО2 → СаСО3;

Мg0 + SО2 → МgSО3;

СаО + SО2 → СаSО3;

СаСО3 + 2НС1 → СаС12 + Н2О + СО2 ↑.

Адсорбційний метод очищення газів – це поглинання газоподібних речовин на поверхні або в об'ємі мікропор твердого тіла. Апарати, в яких здійснюється процес очищення за допомогою цього методу, називаються адсорберами. На практиці використовують адсорбери з нерухомим шаром адсорбенту, з рухомим шаром адсорбенту та з киплячим шаром (рис. 5.14). Тверду речовину, на поверхні або в об'ємі пор якої відбувається концентрування очищуваних речовин, називають адсорбентом. Забруднювальні речовини, що перебувають у газовій або рідкій фазі, називають адсорбтивом, а після переходу в адсорбований стан – адсорбатом. Для адсорбційного очищення газів використовують активоване вугілля, силікагелі, цеоліти, глинисті мінерали, пористе скло тощо. Найважливішими властивостями адсорбенту є його вибірковість, адсорбтивна ємність (активність); пористість структури, об’єм пор. Вилучені з очищуваних газів речовини адсорбтиви, які надалі видаляють десорбцією, можуть бути використані для тих чи інших цілей. Цей процес називають регенерацією адсорбента і здійснюють здебільшого нагріванням перегрітою парою. Адсорбцією на активованому вугіллі очищають відхідні гази від гідрогенсульфіду у виробництві штучного волокна. За допомогою адсорбції на силікагелі очищають газові викиди від оксидів нітрогену.

Хімічні методи очищення викидних газів засновані на хімічному зв'я- зуванні шкідливих забруднювальних речовин. Поширеним методом є хемосорбція, коли очищуваний газ промивають розчином речовин, що реагують із забруднювальними домішками. Так, для вловлювання оксидів нітрогену застосовують торфолужні композиції з гідроксидом кальцію або аміаком. У результаті хемосорбції утворюється добриво з 6–8 %-м вмістом зв'язаного азоту у вигляді нітратів кальцію і амонію.

Метод хемосорбції будується на поглинанні газів твердими і рідкими поглиначами з утворенням слаболетких або слабозрочинних хімічних сполук , які в результаті побічних перетворень дозволяють отримати корисний кінцевий продукт (наприклад, при вилученні із газів сірководню отримують сірку за допомогою миш’яколужного розчину).

68

Рис. 5.14. Конструктивна схема адсорбера з киплячим шаром. 1 – циліндричний корпус з конусом унизу;

2 – розподільча решітка; 3 – патрубок для введення адсорбенту; 4 – циклонний пристрій; 5 – киплячий шар адсорбенту;

6 патрубок для виведення адсорбенту;

7 – штуцер для подачі забрудненого газу

Термічне знешкодження газів ґрунтується на високотемпературному спалюванні горючих домішок, тобто окисненні знешкоджуваних компонентів киснем. Перевагою методів термічного знешкодження є невеликі розміри установок та простота їх обслуговування, можливість автоматизації, висока ефективність знешкодження при низьких затратах коштів.

Однак, вибираючи термічний метод, необхідно враховувати властивості речовин, що утворюються внаслідок реакції окислення. Наприклад, при спалюванні газів, що містять фосфор, галогени та сірку, утворюються продукти реакції, які за токсичністю удекілька разів перевищують вихідні газові викиди.

Необхідно також враховувати, що сполучення горючих речовин з киснем утворює вибухонебезпечну суміш. Для запобігання цьому концентрацію газових викидів зменшують додаванням повітря.

Істотне значення в організації процесу термічного знешкодження газових викидів має підготовка газів до реакції, а саме нагрівання суміші до необхідної температури і забезпечення змішування горючих газів з окислювачем. Ефективність процесу термічного знешкодження сумішей визначається температурою, часом перебування газу в зоні реакції та турбулентністю газових потоків в камері згорання.

Залежно від умов спалювання та технологічного оформлення процесу використовують два методи: в топкових та факельних пристроях.

69

У багатьох випадках для очищення відхідних газів застосовують каталітичні процеси окиснення, відновлення та розкладання. Наприклад, вихлопні автомобільні гази очищають від оксиду карбону (II) шляхом його окисляючи до вуглекислого газу на купрум-мангановому каталізаторі, що являє собою суміш оксидів мангану і купруму:

2CO+O2 каталізатор2CO2

Каталітичне відновлення оксидів нітрогену до N2 здійснюють за допомогою відновників — водню, метану або аміаку за наявності платино- паладієво-родієвих каталізаторів.

Каталітичні методи використовують для перетворення токсичних компонентів промислових викидів у нешкідливі чи менш шкідливі речовини.

Лекція 6. Очищення виробничих стічних вод.

Нормативні вимоги до якості води. Умови скидання стічних вод у водойми. Класифікація забруднювальних речовин. Методи очищення стічних вод.

Нормативні вимоги до якості води. Під забрудненістю розуміють такий стан водного об’єкта в офіційно встановленому місці його використання, за якого спостерігається відхилення від норми в бік збільшення вмісту тих чи інших компонентів. Основною нормативною вимогою до якості води у водоймі є збереження встановлених гранично допустимих концентрацій (ГДК) забруднювальних речовин.

Склад і властивості води у водоймах мають відповідати нормативам у контрольному створі (контрольний створ – поперечний перетин водотоку, в якому здійснюється контроль за якістю води), закладеному на водотоках, на відстані одного кілометра вище від найближчого за течією пункту водокористувача.

Встановлено два види нормативів якості води – санітарно-гігієнічні (для потреб населення) та рибогосподарські. Лімітуючими показниками шкідливості забруднювальних домішок є санітарно-токсикологічні, загальносанітарні, органолептичні та бактеріологічні показники.

Органолептичні показники визначають за запахом, смаком, кольором, кількістю завислих речовин, рН, загальною твердістю, сухим залишком, вмістом заліза, хлоридів, сульфатів, нафтопродуктів тощо.

Важливим показником є прозорість води, оскільки від неї залежить інтенсивність фотосинтезу, глибина проникнення світла у товщу води.

Санітарно-токсикологічні показники води визначають за вмістом азоту (аміаку, нітратів, нітритів), фтору, поверхнево-активних речовин, фенолу, ціанідів, міді, свинцю, хлору, цезію-137 і стронцію-90.

70

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]