- •Лабораторна робота мех 1 вивчення законів рівномірного та рівноприскореного рухів
- •Основні теоретичні відомості
- •1 М/с2.
- •Опис лабораторної установки
- •Порядок виконання роботи
- •Завдання 2. Дослідження законів рівноприскореного руху
- •7. Порівняти одержані в трьох серіях вимірювань значення прискорення з урахуванням знайденого довірчого інтервалута зробити висновок. Контрольні запитання
- •Лабораторна робота мех 2 вивченя основного закону динаміки поступального руху
- •Основні теоретичні відомості
- •Опис лабораторної установки
- •Порядок виконання роботи
- •Завдання 2. Дослідити залежність прискорення від маси системипри сталій рівнодійній силі,
- •Контрольні запитання
- •Лабораторна робота мех 3 експеримент альне вивчення закону збереження імпульсу
- •3.1. Основні теоретичні відомості
- •3.3. Порядок виконання роботи
- •3.4. Контрольні запитання
- •Лабораторна робота мех 4 вимірювання швидкості руху кулі за допомогою балістичного маятника
- •Основні теоретичні відомості
- •Порядок виконання роботи.
- •Контрольні запитання
- •§ 7–12, Ст.. 44–51, 2006 р.
- •5.3. Порядок виконання роботи
- •Завдання іі. Дослідження залежності між моментом інерції і і кутовим прискоренням тіла
- •Таблиця 5.2
- •Контрольні запитання
- •Лабораторна робота Мех. 7 визначення моменту інерції кільця за допомогою маятника максвелла
- •Основні теоретичні відомості
- •Опис лабораторної установки
- •Порядок виконання роботи
- •Контрольні запитання
- •Лабораторна робота мех 8 експериментадьне дослідження процесів взаємоперетворення різних видів механічної енергії за допомогою маятника максвелла.
- •Опис лабораторної установи
- •Порядок виконання роботи.
- •Контрольні запитання
- •Лабораторна робота мех 9 дослідна перевірка теореми штейнера
- •Основні теоретичні відомості
- •Порядок виконання роботи
- •Контрольні запитання
- •Лабораторна робота мех 6 визначення моменту інерції тіл методом гармонічних коливань
- •Основні теоретичні відомості
- •Використання крутильних коливань для визначення моменту інерції
- •Хід виконання роботи
- •Контрольні запитання
- •§ 11, 12, Ст. 38–43, § 18, ст. 48–54 ;
- •Експериментальне визначення модуля кручення циліндричного стрижня (дротини).
- •Хід виконання роботи
- •Контрольні запитання
- •§ 11– 12, Ст. 38–43, § 18, ст. 48–54 ;
- •Порядок виконання роботи
- •Контрольні запитання
- •Опис установки
- •Порядок виконання роботи
- •Контрольні запитання
- •§ 13, 14, 18, 20 ;
- •Завдання 1.
- •Порядок виконання роботи
- •Завдання 2.
- •Опис приладу
- •Порядок виконання роботи
- •Контрольні запитання
- •Порядок виконання роботи
- •Контрольні запитання
- •§ 13, 14, 16 ;
- •§ 63, 64, 66.
- •Література
Контрольні запитання
1. Сформулюйте закон збереження моменту імпульсу системи.
2. Сформулюйте закон збереження механічної енергії.
3. Від чого залежить період крутильних коливань ?
4.
Від чого залежить модуль кручення
дротини ?
5. Запишіть вираз для моменту інерції балістичного маятника.
6. В чому полягає принцип вимірювання швидкості руху кулі в даній роботі.
7. Запишіть кінцеву формулу для обчислення швидкості руху кулі.
Література:
§ 37–39, 103–109, § 64, 80–84, 2002 р.
§ 7–12, Ст.. 44–51, 2006 р.
§
12–15, ст.. 44–45, 2008 р.
Лабораторна робота МЕХ.5
ВИВЧЕННЯ ОСНОВНОГО ЗАКОНУ ДИНАМІКИ ОБЕРТАЛЬНОГО РУХУ ТІЛ
Мета роботи: дослідним шляхом встановити залежність між кутовим прискоренням β, моментом сили M і моментом інерції J.
Основні теоретичні відомості
Дія сили, що обертає тіло, характеризується величиною, яка називається моментом сили. Модуль момента сили відносно осі обертання дорівнює добутку сили на її плече
M=F∙l (5.1)

(рис,
5.1), тобто довжина перпендикуляра ,
опущеного з осі обертання на лінію дії
сили (А — точка прикладання сили
;r
— відстань від осі обертання до точки
прикладання сили).
Мірою інертності тіл під час обертального руху є момент інерції тіла I. Моментом інерції матеріальної точки Ii
відносно осі обертання називається добуток маси mi цієї точки на квадрат відстані від неї до осі обертання ri .
Рис.5.1.
(5.2)
Моментом інерції тіла відносно осі обертання називається сума моментів iнерції всіх його матеріальних точок:
(5.3)
Момент інерції залежить від маси тіла, його розмірів і від розподілу цієї маси відносно осі обертання.
Основний
закон динаміки обертального руху
визначає залежність між обертальним
моментом (моментом сили)
,
моментом інерції
та
кутовим прискоренням
:
,
або
![]()
Кутове прискорення характеризує швидкість зміни кутової швидкості та дорівнює зміні кутової швидкості за одиницю часу:
![]()


Риc. 5.2.
Залежність
між значеннями кутового прискорення β
тіла, що обертається і тангенційного
прискорення
будь-якої його точки, що перебуває
на відстані
від
осі обертання, визначається співвідношенням
![]()
Спростимо рис. 5.2. На рис. 5.3 показані сили, що діють на тягарець 1 (тіло 1).
У
даній роботі залежність між обертальним
моментом
тіла,
моментом його інерції
відносно осі обертання і кутовим
прискоренням
встановлюється за допомогою хрестоподібного
маховика, який називається маятником
Обербека (рис. 5.2).
Розглянемо поступальний рух тягарців 2, масою m. Їх прямолінійний рух вниз з лінійним прискоренням a можна описати згідно з другим законом Ньютона рівнянням:
,
де
– сила тяжіння,
;
–
сила натягу нитки.
Через проекції на вісь ОУ це рівняння перепишеться так
,
або
.
Обертальний
рух шківа 6 з хрестовиною 1 та тягарцями
5 (в подальшому будемо звати це системою)
відбувається з кутовим прискоренням
за законом
,
де
–
момент інерції шківа 6, хрестовини 1 та
тягарців 5 ;
– момент сил, які надають системі
обертального руху.
Як
видно з рис. 5.2 , обертальний рух системи
відбувається під дією сили натягу
.
Тому
,
де
r
–
радіус
шківа (плече сили
).
Отже
.
(5.4)
Оскільки
тангенційне прискорення точок ободу
шківа дорівнює прискоренню
,
з яким опускаються тягарці 2, то величину
а можна визначити з рівняння
рівноприскореного руху
.
Тоді
робоча формула для визначення обертального
моменту
набуде
такого вигляду:
(5.5)
Кутове
прискорення
можна
визначити за таким виразом:
, (5.6)
Змінюючи
сумарну масу підвішених тягарців
(кількість тягарців) 2, змінюємо величину
обертального моменту
,
що приводить до зміни кутового прискорення
У разі збільшення моменту
збільшується значення
.
Якщо форма маятника Обербека незмінна,
то відношення цих величин має залишатися
сталим. Це означає, що за незмінного
моменту інерції
маятника Обербека кутове прискорення
пропорційне величині обертального
момента
,
тобто залежність
є
лінійною, а коефіцієнт пропорційності
є момент інерції
.
Використавши
значення
та
з формул (5.5) і (5.6), можна визначити
значення моменту інерції маятника:
. (5.7)
Момент
інерції
хрестоподібного
маховика залежить від положення на
стрижнях маховика рухомих тягарців.
Змінюючи положення тягарців на стрижнях,
змінюємо водночас момент інерції
маховика. Якщо обертальний момент
залишається сталим, то у разі зміни
моменту інерції
має змінюватись кутове прискорення
,
оскільки
.
У разі зменшення моменту інерції має
збільшуватись кутове прискорення.
5.2. Потрібне устаткування: Лабораторна установка моделі РРМ-06 (маятник Обербека); набір тягарців з підставкою; штангенциркуль.
