- •Міністерство освіти і науки україни
- •Київ нухт 2013
- •Тема 1. Поняття про економіко-математичні моделі і моделювання 10
- •2. Зміст занять з дисципліни
- •4. Вказівки до виконання лабораторних робіт
- •5. Вказівки до виконання контрольної роботи студентами заочної форми навчання
- •Тема 1. Поняття про економіко-математичні моделі і моделювання
- •Алгоритми побудови моделей
- •Лабораторна робота № 1. «Лінійна модель»
- •Лабораторна робота № 2. «Степенева функція»
- •Лабораторна робота № 3. «Параболічна функція»
- •Лабораторна робота № 4. «Гіперболічна функція»
- •Лабораторна робота № 5. «Експоненціальна модель»
- •Контрольні запитання
- •Тема 2. Лінійне програмування
- •Розв'язування
- •Ітерація 1
- •Ітерація 2
- •Ітерація 3
- •Ітерація 4
- •Економічна інтерпретація математичного розв'язку.
- •Лабораторна робота № 6 «Задача оптимального використання ресурсів»
- •Контрольні запитання
- •Тема 3. Моделі оптимального планування на рівні підприємства
- •Лабораторна робота № 7 «Розрахунок оптимальної виробничої програми карамельного цеху»
- •Вихідні дані для побудови робочої моделі
- •Потреба у сировині, кг/т карамелі
- •Приклад виконання лабораторної роботи.
- •5) По випуску продукції
- •6) По фінансовим можливостям
- •Потреба у сировині, кг/т карамелі
- •Річна продуктивність ліній
- •Робоча матриця
- •Аналіз результатів
- •Вихідні дані для побудови робочої моделі (формули розрахунку)
- •Річна продуктивність ліній (формули розрахунку)
- •Звіт за результатами
- •Звіт по стійкості
- •Звіт по границям
- •Лабораторна робота № 8 «Оптимізація виробничої програми молочного заводу»
- •Робоча модель
- •Лабораторна робота № 9 «Оптимізація виробничої програми ковбасного виробництва»
- •Приклад виконання задачі оптимізації виробничої програми підприємства (цеху, дільниці)
- •Приклад № 1 виконання лабораторної роботи
- •Розв’язок
- •Приклад № 2 виконання лабораторної роботи
- •Вихідні дані для оптимізації ковбасного виробництва
- •Розв’язок
- •Економічний аналіз отриманих результатів
- •Лабораторна робота № 10 «Оптимізація виробничої програми хлібозаводу»
- •Приклад виконання лабораторної роботи Робоча модель задачі.
- •Лабораторна робота № 11 «Модель оптимального використання потужності»
- •Приклад виконання лабораторної роботи
- •Розв'язок
- •Лабораторна робота № 12. «Транспортна задача»
- •Постановка транспортної задачі
- •2. Приклад рішення транспортної задачі за допомогою електронних таблиць
- •Вихідні дані для транспортної задачі
- •3. Економічна інтерпретація математичного розв’язку транспортної задачі
- •Контрольні запитання
- •Лабораторна робота №13 Оптимізація рекламної кампанії
- •Тема 4. Нелінійні оптимізаційні моделі економічних систем
- •Контрольні запитання
- •Додаток 1 Табличні значення критерію Фішера
- •Додаток 2
- •Додаток 3
- •Додаток 4 Основні вбудовані функції системи Eхсеl
- •1. Математичні функції
- •2. Категорія «Ссылки и массивы»
- •3. Статистичні функції
- •Література Основна
- •Додаткова
Алгоритми побудови моделей
Модель лінійної регресії (лінійне рівняння) є найпоширенішим видом залежності між економічними змінними.
Скористаймося методом найменших квадратів, суть якого полягає у наступному: сума квадратів відхилень ординат точки, що спостерігається (Xi, Yi) від відповідної ординати точки, що лежить на регресійній прямій, повинна бути найменшою
![]()
Використання 1МНК для оцінки теоретичних параметрів моделі парної регресії приводить до таких систем нормальних рівнянь:
лінійна залежність Y = a0 + a1X.


Побудоване лінійне рівняння може слугувати початковою точкою в разі складних (суттєво нелінійних) залежностей.
Нелінійні зв'язки, як правило, певними перетвореннями (заміною змінних чи логарифмуванням) зводять до лінійного вигляду або апроксимують (наближують) лінійними функціями.
б)
гіперболічна
залежність
.Замінюємо
і отримаємо лінійну модель Y
= a0
+ a1х′.
Для оцінки теоретичних параметрів моделі складаємо систему нормальних рівнянь:


в) параболічна залежність Y = a0 + a1х2 . Замінюємо х2 = х′ і отримаємо лінійну модель Y = a0 + a1х′.
Для оцінки теоретичних параметрів моделі складаємо систему нормальних рівнянь:


г)
степенева
залежність
.
Логарифмуємо функцію lnY = ln a0 + a1 · ln Х.
Замінюємо логарифми lnY = Y′, ln Х = Х′ , ln a0 = a′.
Одержуємо лінійну модель Y′ = a′+ a1 · Х′.
Складаємо систему нормальних рівнянь:


д
)експоненціальна
.
Для оцінки теоретичних параметрів зводимо модель до лінійного вигляду:
![]()
Л
огарифмуємо
функцію
З
амінюємо
логарифм
Одержуємо лінійну модель
е)
проста
модифікована експоненціальна
![]()
Методом заміни зводимо модель до лінійного вигляду:

Моделювання здійснюється на основі вибірки статистичних даних, яку студент отримує з відповідних таблиць.
Лабораторні роботи № 1, 2, 3, 4, 5 студент виконує згідно з завданням та варіантом вихідних даних, який отримує у викладача.
ДОДАТКОВО
Для спрощення проміжних розрахунків використаємо вбудовану в електронні таблиці Microsoft Excel статистичну функцію ЛИНЕЙН. Ця функція застосовує метод найменших квадратів, щоб визначити оцінки параметрів лінійної регресії.
ЛИНЕЙН (відомі_значення_Y; відомі_значення_Х; конст; статистика).
Результат – це оцінка параметрів лінійної регресії та регресійна статистика.
Для цього треба:
1) відмітити поле, де буде знаходитись результат розміром (k+1) 5, або m1 5; m1 = k+1
2) ввійти у "майстер функцій f ". У категоріях вибираємо "статистична", а в функціях – ЛИНЕЙН. Вводимо адреси значень Y, Х та значення константи і статистики;
3) для того, щоб отримати на екрані результат, натискаємо спершу клавішу F2, а потім Ctrl+Shift+Еnter.
Функція може додатково обчислювати регресійну статистику (рис.1.1).
«Відомі значення Y» — множина значень Y. Якщо масив Y має один стовпець, то кожний стовпець масиву «відомі_значення_Х» інтерпретуються як окрема змінна. Якщо масив «відомі_значення_Y» має один рядок, то кожний рядок «відомих значень Х» інтерпретується як окрема змінна.
«Відомі_значення_Х» — множина значень Х, що враховує або одну (парна регресія), або кілька змінних (множинна регресія). Якщо «відомі_значення_Х» пропустили, то вважається, що це масив {1; 2; 3;...} такого самого розміру, як n «відомих_значень Y».
«Конст» — логічне значення.
Якщо «конст» має значення «ложь», то 0 беруть таким, що дорівнює нулю: значення добирають так, щоб виконувалася рівність Y=ХА (модель без вільного члена).
Якщо «конст» має значення «истина», то 0 обчислюється традиційно (модель з вільним членом).
«Статистика» — логічне значення, яке вказує, чи потрібно обчислювати додаткову статистику за регресією.
Якщо «статистика» має значення «истина», то функція ЛИНЕЙН обчислює додаткову регресійну статистику у вигляді масиву (див. рис. 1.1).
|
|
|
… |
|
|
|
|
|
… |
|
|
|
R2 |
|
|
|
|
|
F |
Ступінь свободи n–m |
|
|
|
|
|
|
|
|
|
Рис. 1.1. Статистика функції ЛИНЕЙН
де
–
оцінка параметра
,
j=1..k
;
– оцінка вільного члена регресії;
–
стандартна похибка оцінки параметра
aі;
R2 – коефіцієнт детермінації;
–
стандартна похибка залишків;
F – F-критерій.
– середнє значення Yфакт
.
Ступінь свободи дорівнює (n – m), де n – кількість спостережень, m – кількість змінних у моделі; це значення необхідне для визначення табличного значення F-критерію.
–сума
квадратів відхилення, що пояснюється
регресією;
–
сума
квадратів відхилення, що пояснюється
похибкою u.
Якщо статистика має значення «ложь» чи її пропустили, то функція ЛИНЕЙН обчислює лише коефіцієнти aj та константу a0.
