Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка англ.яз Радіотехніка.doc
Скачиваний:
7
Добавлен:
10.02.2016
Размер:
251.39 Кб
Скачать

Lesson 8

Read the text: Amplifiers

When people refer to "amplifiers," they're usually talking about stereo components or musical equipment. But this is only a small representation of the spectrum of audio amplifiers. There are actually amplifiers all around us. You'll find them in televisions, computers, portable CD players and most other devices that use a speaker to produce sound.

Sound is a fascinating phenomenon. When something vibrates in the atmosphere, it moves the air particles around it. Those air particles in turn move the air particles around them, carrying the pulse of the vibration through the air. Our ears pick up these fluctuations in air pressure and translate them into electrical signals the brain can process.

Electronic sound equipment works the same basic way. It represents sound as a varying electric current. Broadly speaking, there are three steps in this sort of sound reproduction:

  • Sound waves move a microphone diaphragm back and forth, and the microphone translates this movement into an electrical signal. The electrical signal fluctuates to represent the compressions and rarefactions of the sound wave.

  • A recorder encodes this electrical signal as a pattern in some sort of medium -- as magnetic impulses on tape, for example, or as grooves in a record.

  • A player (such as a tape deck) re-interprets this pattern as an electrical signal and uses this electricity to move a speaker cone back and forth. This re-creates the air-pressure fluctuations originally recorded by the microphone.

All the major components in this system are essentially translators: They take the signal in one form and put it into another. In the end, the sound signal is translated back into its original form, a physical sound wave.

­ In order to register all of the minute pressure fluctuations in a sound wave, the microphone diaphragm has to be extremely sensitive. This means it is very thin and moves only a short distance. Consequently, the microphone produces a fairly small electrical current.

This is fine for most of the stages in the process - it's strong enough for use in the recorder, for example, and it is easily transmitted through wires. But the final step in the process -- pushing the speaker cone back and forth -- is more difficult. To do this, it is necessary to boost the audio signal so it has a larger current while preserving the same pattern of charge fluctuation.

In actuality, the amplifier generates a completely new output signal based on the input signal. These signals may be considered as two separate circuits. The output circuit is generated by the amplifier's power supply, which draws energy from a battery or power outlet. If the amplifier is powered by household alternating current, where the flow of charge changes directions, the power supply will convert it into direct current, where the charge always flows in the same direction. The power supply also smoothes out the current to generate an absolutely even, uninterrupted signal. The output circuit's load (the work it does) is moving the speaker cone.

The input circuit is the electrical audio signal recorded on tape or running in from a microphone. Its load is modifying the output circuit. It applies a varying resistance to the output circuit to re-create the voltage fluctuations of the original audio signal.

In most amplifiers, this load is too much work for the original audio signal. For this reason, the signal is first boosted by a pre-amplifier, which sends a stronger output signal to the power amplifier. The pre-amplifier works the same basic way as the amplifier: The input circuit applies varying resistance to an output circuit generated by the power supply. Some amplifier systems use several pre-amplifiers to gradually build up to a high-voltage output signal.

Inside an amplifier, there are a lot of electronic components. The central components are the large transistors. The transistors generate a lot of heat, which is dissipated by the heat sink.

  1. Write down the key-words that help you to catch the main idea of the text

  2. Write down all the unknown words and translate them with a dictionary.

  3. Pick out the basic information of every paragraph.

  4. Put five questions to the text.

  5. Summarize the information from the text in some sentences.