
- •Глава 9. Пищеварение
- •9.1. Физиологические основы голода и насыщения
- •9.2. Сущность пищеварения. Конвейерный принцип организации пищеварения
- •9.2.2. Типы пищеварения
- •9.2.3. Конвейерный принцип организации пищеварения
- •9.3. Пищеварительные функции пищеварительного тракта
- •9.3.2. Моторная функция пищеварительного тракта
- •9.3.3. Всасывание
- •9.3.4. Методы изучения пищеварительных функций
- •9.3.5. Регуляция пищеварительных функций
- •9.4. Пищеварение в полости рта и глотание
- •9.4.1. Прием пищи
- •9.4.2. Жевание
- •9.5. Пищеварение в желудке
- •9.5.1. Секреторная функция желудка
- •9.5.3. Эвакуация содержимого желудка
- •9.6.1. Секреция поджелудочной железы
- •9.6.3. Кишечная секреция
- •9.6.4. Полостное и пристеночное пищеварение в тонкой кишке
- •9.6.5. Моторная функция тонкой кишки
- •9.6.6. Всасывание различных веществ в тонкой кишке
- •9.7. Функции толстой кишки
- •9.7.1. Поступление кишечного химуса в толстую кишку
- •9.7.2. Роль толстой кишки в пищеварении
- •9.7.4. Дефекация
- •9.9. Функции печени
- •9.10.1. Экскреторная деятельность пищеварительного тракта
- •9.10.2. Участие пищеварительного тракта в водно-солевом обмене
- •9.10.3. Эндокринная функция пищеварительного тракта
- •9.10.4. Инкреция (эндосекреция) пищеварительными железами ферментов
- •9.10.5. Иммунная система пищеварительного тракта
- •Глава 10. Обмен веществ и энергии. Питание
- •10.1.2. Обмен липидов
- •10.1.3. Обмен углеводов
- •10.1.4. Обмен минеральных солей и воды
- •10.2. Превращение энергии и общий обмен веществ
- •Потребность
- •10.2.1. Методы исследования энергообмена
- •10.2.3. Основной обмен
- •10.2.5. Обмен энергии при физическом труде
- •10.2.6. Обмен энергии при умственном труде
- •10.2.7. Специфическое динамическое действие пищи
- •10.2.8. Регуляция обмена энергии
- •10.3. Питание
- •10.3.1. Пищевые вещества
- •10.3.2. Теоретические основы питания
- •10.3.3. Нормы питания
- •Глава 11. Терморегуляция
- •11.2. Химическая терморегуляция
- •11.4. Регуляция изотермии
- •11.5. Гипотермия и гипертермия
- •Глава 12. Выделение. Физиология почки
- •12.2.3. Процесс мочеобразования
- •12.2.4. Определение величины почечного плазмо- и кровотока
- •12.2.5. Синтез веществ в почках
- •12.2.6. Осмотическое разведение и концентрирование мочи
- •12.2.7. Гомеостатические функции почек
- •12.2.8. Экскреторная функция почек
- •12.2.9. Инкреторная функция почек
- •12.2.10. Метаболическая функция почек
- •12.2.11. Принципы регуляции реабсорбции и секреции веществ в клетках почечных канальцев
- •12.2.12. Регуляция деятельности почек
- •12.2.13. Количество, состав и свойства мочи
- •12.2.15. Последствия удаления почки и искусственная почка
- •12.2.16. Возрастные особенности структуры и функции почек
- •Глава 13. Половое поведение.
- •13.2. Половое созревание
- •13.3. Половое поведение
- •13.4. Физиология полового акта
- •13.5. Беременность и плодоматеринские отношения
- •13.7. Основные перестройки в организме новорожденного
- •13.8. Лактация
- •Глава 14. Сенсорные системы
- •14.1.2. Общие принципы строения сенсорных систем
- •14.1.3. Основные функции сенсорной системы
- •14.1.5. Адаптация сенсорной системы
- •14.1.6. Взаимодействие сенсорных систем
- •14.2. Частная физиология сенсорных систем
- •14.2.1. Зрительная система
- •14.2.2. Слуховая система
- •14.2.3. Вестибулярная система
- •14.2.5. Обонятельная система
- •14.2.7. Висцеральная система
- •Глава 15. Интегративная деятельность мозга человека
- •15.1.2. Методы изучения условных рефлексов
- •15.1.3. Стадии образования условного рефлекса
- •15.1.4. Виды условных рефлексов
- •15.1.5. Торможение условных рефлексов
- •15.1.6. Динамика основных нервных процессов
- •15.1.7. Типы высшей нервной деятельности
- •15.4. Сон и гипноз
- •15.4.2. Гипноз
- •15.5. Основы психофизиологии
- •15.5.2. Психофизиология процесса принятия решения
- •15.6. Вторая сигнальная система
- •15.7. Принцип вероятности и «размытости» в высших интегративных функциях мозга
- •15.8. Межполушарная асимметрия
- •15.9. Влияние двигательной активности на функциональное состояние человека
- •15.9.1. Общие физиологические механизмы влияния двигательной активности на обмен веществ
- •15.9.2. Вегетативное обеспечение двигательной активности
- •15.9.4. Влияние двигательной активности на функции нервно-мышечнO2о аппарата
- •15.9.5. ФизиолO2ическое значение тренированности
- •15.10. Основы физиолo2ии умственнo2о и физическo2о труда
- •15.10.1. ФизиолO2ическая характеристика умственнO2о труда
- •15.10.3. Взаимосвязь умственнO2о и физическO2о труда
- •15.11. Основы хронофизиолo2ии
- •15.11.1. Классификация биолO2ических ритмов
- •15.11.5. БиолO2ические часы
- •15.11.6. Пейсмекеры биолO2ических ритмов млекопитающих
- •391; II, 100, 103 Адренорецептор(ы) I, 221, 260, 270
- •II I, 250, 268, 388; II, 174 АнгиотензинO2ен I, 384; II, 174 АндрO2ены I, 262, 267 Анорексия II, 7
- •III I, 320 Антитела I, 301 Анурия II, 177 Апнейзис I. 426 Апноэ I, 438
- •II, 100 Нормоцит I, 289 н-холинорецепторы I, 223 Ноцицепторы I, 209
- •314 Объем (ы) дыхания минутный I, 411
- •II, 88 Трансдукторы I, 222 Транспорт активный II, 16, 155
- •341 ИзометрическO2о I, 341
- •Глава 9. Пищеварение. Г. Ф. Коротько 4
- •Глава 10. Обмен веществ и энергии. Питание.
- •Глава 12. Выделение. Физиолo2ия почек. Ю. В. Наточин . ... 141
- •Глава 13. Половое поведение. Репродуктивная функция. Лак тация. Ю. И. Савченков, в. И. Кобрин 182
- •Глава 14. Сенсорные системы. М. А. Островский, и. А. Шевелев . . 201
- •Глава 15. Интегративная деятельность мозга человека.
12.2.7. Гомеостатические функции почек
Для поддержания почками постоянства объема и состава внутренней среды и прежде всего крови существуют специальные системы рефлекторной регуляции, включающие специфические рецепторы, афферентные пути и нервные центры, где происходит переработка информации. Команды к почке поступают по эфферентным нервам или гуморальным путем.
В целом перестройка работы почки, ее приспособление к непрестанно изменяющимся условиям определяются преимущественно влиянием на гломерулярный и канальцевый аппарат аргинин-вазопрессина [антидиуретического гормона (АДГ) ], альдостерона, паратгормона и ряда других гормонов.
Роль почек в осмо- и волюморегуляции. Почки являются основным органом осморегуляции. Они обеспечивают выделение избытка воды из организма в виде гипотонической мочи при увеличенном содержании воды (гипергидратация) или экономят воду и экскретируют мочу, гипертоническую по отношению к крови, при обезвоживании организма (дегидратация).
После питья воды или при ее избытке в организме снижается концентрация растворенных осмотически активных веществ в крови и падает ее осмоляльность. Это уменьшает активность центральных осморецепторов, расположенных в области супраоптичес-кого ядра гипоталамуса, а также периферических осморецепторов, имеющихся в печени, почке и других органах, что приводит к снижению секреции АДГ нейрогипофизом и увеличению выделения
воды
почкой. Центральные осморецепторы
открыл английский физиолог
Верней (1947), а представление об
осморегулирующем рефлексе
и периферических осморецепторах
разработал А. Г. Ги-нецинский.
При обезвоживании организма или введении в сосудистое русло гипертонического раствора NaCl увеличивается концентрация осмотически активных веществ в плазме крови, возбуждаются осморецепторы, усиливается секреция АДГ, возрастает всасывание воды в канальцах, уменьшается мочеотделение и выделяется осмотически концентрированная моча (схема 12.1). В эксперименте было показано, что, помимо осморецепторов, секрецию АДГ стимулируют натриорецепторы. При введении в область III желудочка мозга гипертонического раствора NaCl наблюдался антидиу-рез, если же вводить в то же место гипертонический раствор сахарозы, то мочеотделение не уменьшается.
Осморецепторы высокочувствительны к сдвигам концентрации осмотически активных веществ в плазме крови. При увеличении концентрации в плазме осмотически активных веществ на 1 % (около 3 мосмоль/кг Н20) концентрация аргинин-вазопрессина в плазме крови у человека возрастает на 1 пг/мл'. Повышение концентрации осмотически активных веществ в плазме на 1 мосмоль/кг
Н2О вызывает благодаря выделению АДГ увеличение осмотической концентрации мочи почти на 100 мосмоль/кг Н2О, а переход от состояния водного диуреза до максимального осмотического концентрирования мочи требует 10-кратного возрастания активности АДГ в крови — с 0,5 до 5 пг/мл.
Помимо осмо- и натриорецепторов, уровень секреции АДГ определяет активность волюморецепторов, воспринимающих изменение объема внутрисосудистой и внеклеточной жидкости. Ведущее значение в регуляции секреции АДГ имеют рецепторы, которые реагируют на изменение напряжения сосудистой стенки в области низкого давления. Прежде всего это рецепторы левого предсердия, импульсы от которых передаются в ЦНС по афферентным волокнам блуждающего нерва. При увеличении кровенаполнения левого предсердия активируются волюморецепторы и угнетается секреция АДГ, что вызывает усиление мочеотделения. Поскольку активация волюморецепторов в отличие от осморецепторов обусловлена увеличением объема жидкости, т. е. возросшим содержанием в организме воды и солей натрия, возбуждение волюморецепторов приводит к увеличению экскреции почкой не только воды, но и натрия. Эти процессы связаны с секрецией натрийуретическо-го гормона, уменьшением секреции ренина, ангиотензина, альдо-стерона, при этом снижается тонус симпатической нервной системы, в результате уменьшается реабсорбция натрия и возрастают натрийурез и мочеотделение. В конечном счете восстанавливается объем крови и внеклеточной жидкости.
Роль почек в регуляции ионного состава крови. Почки являются эффекторным органом системы ионного гомеостаза. В организме существуют системы регуляции баланса каждого из ионов. Для некоторых ионов уже описаны специфические рецепторы, например натриорецепторы. Рефлекторная регуляция транспорта ионов в почечных канальцах осуществляется как периферическими, так и центральными нервными механизмами.
Регуляция реабсорбции и секреции ионов в почечных канальцах осуществляется несколькими гормонами. Реабсорбция натрия возрастает в конечных частях дистального сегмента нефрона и собирательных трубочках под влиянием гормона коркового вещества надпочечника альдостерона. Этот гормон выделяется в кровь при уменьшении концентрации натрия в плазме крови и уменьшении объема циркулирующей крови. В усилении выделения натрия почкой участвует натрийуретический гормон, одним из мест образования которого является предсердие. При увеличении объема циркулирующей крови, повышении объема внеклеточной жидкости в организме усиливается секреция в кровь этого пептидного гормона.
Секрецию калия в дистальном сегменте и собирательных трубочках усиливает альдостерон. Инсулин уменьшает выделение калия. Алкалоз сопровождается усилением выделения калия, а при ацидозе калийурез уменьшается.
При уменьшении концентрации кальция в крови паращи-
товидные железы выделяют паратгормон, который способствует нормализации уровня кальция в крови, в частности благодаря увеличению его реабсорбции в почечных канальцах и высвобождению из кости. При гиперкальциемии, а также под влиянием гастрина (или подобного ему вещества), вырабатываемого в пищеварительном тракте в процессе всасывания кальция, стимулируется выделение в кровь парафолликулярными клетками щитовидной железы кальцитонина, который способствует уменьшению концентрации Са2+ в плазме крови благодаря увеличению экскреции почкой и переходу Са2+ в кость. В регуляции обмена Са2+ участвуют образующиеся в почке активные формы витамина D3, в частности 1,25-
(ОН)2-холекальциферол. В почечных канальцах регулируется уровень реабсорбции Mg2"1", Cl~, SO42-, а также микроэлементов.
Роль почек в регуляции кислотно-основного состояния. Почки участвуют в поддержании постоянства концентрации Н+ в крови, экскретируя кислые продукты обмена. Активная реакция мочи у человека и животных может очень резко меняться в зависимости от состояния кислотно-основного состояния организма. Концентрация Н+ при ацидозе и алкалозе различается почти в 1000 раз, при ацидозе рН может снижаться до 4,5, при алкалозе — достигать 8,0. Это способствует участию почек в стабилизации рН плазмы крови на уровне 7,36. Механизм подкисления мочи основан на секреции клетками канальцев Н+ (рис. 12.10). В апикальной плазматической мембране и цитоплазме клеток различных отделов нефрона находится фермент карбоангидраза (КА), катализирующий реакцию гидратации С02: С02 + Н20 >< H2C03 >< H+ + НСО3~.
Секреция Н+ создает условия для реабсорбции вместе с гидрокарбонатом равного количества Naf. Наряду с натрий-калиевым насосом и электрогенным натриевым насосом, обусловливающим перенос Na+ с С1~, реабсорбция Na+ с гидрокарбонатом играет важную роль в поддержании натриевого баланса. Фильтрующийся из плазмы крови гидрокарбонат соединяется с секретированным клеткой Н+ и в просвете канальца превращается в С02. Образование Н+ происходит следующим образом. Внутри клетки вследствие гидратации С02 образуется Н2СОз и диссоциирует на Н+ и HCO3~. В просвете канальца Н+ связываются не только с HCOf, но и с такими соединениями, как двузамещенный фосфат (Na2HP04), и некоторыми другими, в результате чего увеличивается экскреция титруемых кислот (ТА-) с мочой. Это способствует выделению кислот и восстановлению резерва оснований в плазме крови. Наконец, секрети-руемый Н+ может связываться в просвете канальца с NH3, образующимся в клетке при дезаминировании глутамина и ряда аминокислот и диффундирующим через мембрану в просвет канальца, в котором образуется ион аммония: NH3 + Н+ -> NH4+. Этот процесс способствует сбережению в организме Na+ и К+, которые реабсорбируются в канальцах. Таким образом, общая экскреция кислот почкой (UH+ *V) складывается из трех компонентов — титруемых кислот (UTA*V), аммония (UNH4*V) и гидрокарбоната:
При питании мясом образуется большее количество кислот и моча становится кислой, а при потреблении растительной пищи рН сдвигается в щелочную сторону. При интенсивной физической работе из мышц в кровь поступает значительное количество молочной и фосфорной кислот и почки увеличивают выделение «кислых» продуктов с мочой.
Кислотовыделительная функция почек во многом зависит от кислотно-основного состояния организма. Так, при гиповентиля-ции легких происходит задержка СО2 и снижается рН крови — развивается дыхательный ацидоз, при гипервентиляции уменьшается напряжение СO2 в крови, растет рН крови — возникает состояние дыхательного алкалоза. Содержание ацетоуксусной и (i-оксимасляной кислот может нарастать при нелеченом сахарном диабете. В этом случае резко снижается концентрация гидрокарбоната в крови, развивается состояние метаболического ацидоза. Рвота, сопровождающаяся потерей соляной кислоты, приводит к увеличению в крови концентрации гидрокарбоната и метаболичес-
кому алкалозу. При нарушении баланса Н+ вследствие первичных изменений напряжения С02 развивается дыхательный алкалоз или ацидоз, при изменении концентрации НСОу наступает метаболический алкалоз или ацидоз. Наряду с почками в нормализации кислотно-основного состояния участвуют и легкие. При дыхательном ацидозе увеличиваются экскреция Н+ и реабсорбция HCO3, при дыхательном алкалозе уменьшаются выделение Н+ и реабсорбция HCO3~
Метаболический ацидоз компенсируется гипервентиляцией легких. В конечном счете почки стабилизируют концентрацию гидрокарбоната в плазме крови на уровне 26—28 ммоль/л, а рН — на уровне 7,36.