
- •А.В. Кирис, в.В. Лисин
- •1. Введение. Основные понятия и определения….........................................6
- •Техническая термодинамика
- •Светлой памяти профессора
- •Основы термодинамики
- •1. Введение. Основные понятия и определения
- •1.1 Рабочее тело
- •1.2 Термодинамическая система
- •1.3 Параметры состояния Термодинамическим состоянием тела называется совокупность физических свойств, присущих данного телу.
- •1.4 Основные законы идеальных газов
- •2. Состояние термодинамической системы
- •2.1 Уравнение состония. Объединенный газовый закон
- •2.2 Физический смысл газовой постоянной r
- •2.3 Универсальное уравнение состояния идеального газа
- •2.4 Газовые смеси
- •2.5 Способы задания смеси
- •2.6 Расчет газовой смеси. Основные расчетные соотношения
- •2.7 Уравнение состояния для смеси
- •3.2 Закон Майера
- •3.3 Первый закон термодинамики
- •3.4 Аналитическое определение и графическое изображение работы
- •3.5 Теплота и работа в термодинамическом процессе
- •3.6 Внутренняя энергия
- •3.7 Энтальпия
- •3.8 Контрольные вопросы
- •4. Основные термодинамические процессы
- •4.1 Методика исследования термодинамических процессов
- •4.2 Изохорный процесс
- •4.3 Изобарный процесс
- •4.4 Изотермный процесс
- •4.5 Адиабатный процесс
- •4.6 Политропный процесс
- •4.7 Теплоемкость политропного процесса
- •4.8 Определение численного значения показателя n
- •4.9 Взаиморасположение термодинамических процессов в p-V
- •Все рассмотренные нами процессы имели n0 и процессы располага-лись в II и IV четвертях. В данном случае при расширении давление
- •4.10 Контрольные вопросы
- •5. Второй закон термодинамики
- •5.1 Круговые процессы
- •5.2 Второй закон термодинамики
- •5.3 Некоторые формулировки второго закона термодинамики
- •5.4 Обратимость термодинамических процессов
- •5.5 Цикл Карно
- •5.7 Энтропия
- •5.8 Работоспособность (эксергия)
- •5.9 Пределы применимости второго закона
- •5.10 Контрольные вопросы
- •6. Изменение энтропии в процессах.
- •6.1 Координатная система t - s
- •6.2 Обобщенный (регенеративный) цикл Карно
- •6.3 Среднеинтегральная температура
- •6.4 Энтропийные уравнения
- •6.5 Изображение термодинамических процессов в t-s координатной системе
- •7.2 Диаграмма Эндрюса
- •7.3 Механизм парообразования
- •7.5 Процесс парообразования в р-V диаграмме. Виды пара
- •7.6 График парообразования в t-s диаграмме
- •7.7 Таблицы термодинамических свойств воды и пара
- •7.8 Теплота парообразования
- •7.9 Анализ параметров трех фаз парообразования. Критические
- •7.10 Измерения энтропии по трем фазам парообразования
- •7.11 Диаграмма I – s
- •7.12 Контрольные вопросы
- •8. Воздух
- •8.1 Влажный воздух
- •8.2 Диаграмма I – d для влажного воздуха
- •8.3 Контрольные вопросы
- •Техническая термодинамика
- •9. Циклы паросиловых установок
- •9.1 Паровой цикл Карно
- •9.2 Цикл Ренкина
- •9.3 Повышение
- •9.4 Цикл с двойным перегревом пара
- •9.5 Регенеративный цикл
- •9.6 Коэффициенты полезного действия
- •10. Циклы двигателей внутреннего сгорания
- •10.1 Цикл Отто (цикл быстрого горения с подводом теплоты при постоянном объеме)
- •10.2 Цикл Дизеля (цикл медленного горения, с подводом теплоты при постоянном давлении)
- •10.3 Цикл Тринклера (цикл со смешанным подводом теплоты)
- •10.4 Сравнение циклов двс
- •10.5 Контрольные вопросы
- •11. Циклы газотурбинных установок и реактивных двигателей
- •11.1 Газотурбинные установки. Общая характеристика
- •11.2 Цикл простейшей гту
- •11.3 Принцип работы реактивного двигателя
- •11.4 Способы повышения гту
- •11.5 Контрольные вопросы
- •12. Циклы холодильных установок
- •12.1 Холодильные установки морских судов
- •12.2 Циклы воздушных, пароэжекторных и абсорбционных холодильных установок
- •12.3 Контрольные вопросы
- •13. Компрессоры
- •13.1 Компрессоры
- •13.2 Определение работы ступени идеального компрессора
- •13.3 Цикл одноступенчатого компрессора
- •13.4 Контрольные вопросы
- •14. Истечение
- •14.1 Определение работы истечения газа или пара
- •Тогда работа против внешних сил при перем ещении составит p1v1 - p2 v2.
- •14.2 Определение скорости при истечении
- •14.3 Массовый секундный расход газа или пара при адиабатном расширении
- •14.4 Форма струи при адиабатном истечении газа и пара
- •14.6 Построение сопла для использовании полного теплоперепада (сопла переменного сечения – сопла Лаваля)
- •14.7 Истечение через короткое цилиндрическое сопло
- •14.8 Графики скорости, расхода и удельного объема
- •14.9 Изохорное истечение газа и пара
- •14.10 Адиабатное истечение с трением
- •14.11 Дросселирование (мятие) пара
- •14.12 Контрольные вопросы
- •Термодинаміка і теплотехніка
- •Навчальний посібник у двох частинах
- •Частина 1
- •Термодинаміка
7.2 Диаграмма Эндрюса
Рис. 28
В 1869 г. Эндрюс впервые экспериментально по данным изотермного сжатия СО2 построил p-v диаграмму (рис. 28, сплошные линии).
Для
идеального газа
pv
= RT
и
.
Для реального газа
,
поэтому графическое изображение
изотермы реального газа не соответствует
равнобокой гиперболе (уравнение
pv
= const).
7.3 Механизм парообразования
Парообразованием называется превращение вещества из жидкого состояния в газообразное.
Из повседневного опыта известно, что жидкость в открытом сосуде постепенно испаряется. Испарением называется такое парообразование, которое происходит всегда и при любой температуре.
Механизм этого явления заключается в том, что отдельные молекулы, обладающие наибольшей скоростью, преодолевая поверхностное натяжение, вылетают за поверхность раздела. Если сосуд открыт, то путем диффузии и перемешивания пар распространяется в окружающую среду. Если сосуд закрыт, количество молекул пара над жидкостью остается постоянным за счет динамического равновесия между молекулами испаряющимися и конденсирующимися.
Пар, находящийся в равновесии с жидкостью, называется насыщенным. Если, не меняя температуры, изменить объем над жидкостью, то концентрация молекул изменится, динамическое равновесие нарушится. Для его восстановления неизбежно произойдет либо испарение, либо конденсация. В итоге восстановится прежнее давление насыщенного пара.
При заданной температуре давление насыщенного пара (давление насыщения) имеет одну и ту же строго определенную величину. Чем выше температура, при которой испаряется жидкость, тем выше давление насыщенного пара.
Превращение жидкости в пар требует подвода тепла. В противном случае температура жидкости понижалась бы. Интенсивный подвод тепла вызывает интенсивное парообразование. В этом случае процесс испарения называют кипением.
При кипении, как и при испарении, температура кипения однозначно определяется давлением. Температура кипения – это та температура, при которой давление насыщенного пара равно внешнему давлению.
Все рабочие тела, меняя свое агрегатное состояние, проходят три стадии парообразования и меняют свой удельный объем (вода– пар – перегретый пар). Изменение объема происходит до критической точки, параметры которой следующие: ркр = 225,05 ата, to = 374,15oС, v = 0,0031 м3/кг.
7.4 р – Т диаграмма
Переход рабочего тела из одно Переход рабочего тела из одного агрегат-
ного состояния в другое назыв ноногого состояния в другое называется фазовым переходом. В разных агрегатн зовым переходом. В разных агрегатных
состояниях состояниях вещество имеет различные
вещество имеет различные сво веесвойства. Поле p – t диаграммы делится кривыми фазt диаграммы делится кр кривыми фазовых переходов на три об-
ас- ходов на три области (рис. 29): ласти (рис. 29):
Влево от САВ – область твердого состоя-
Ниния. Вправо от САК – область газообраз-
Рис. 29
ного состояния. Между АВ и АК – область жидкого состояния.
В т. А вещество может находиться одновременно в трех состояниях. Например, для воды в т. А р = 611 Па, v = 0,001 м3/кг, t = 0,01oC.
Вид и расположение кривых АВ, АС и АК зависят от свойств веществ и для воды, вследствие аномальности, АВ имеет наклон влево. АВ характеризуется равновесным состоянием твердое тело + жидкость; АК характеризуется равновесным состоянием жидкость + пар; АС характеризуется равновесным состоянием твердое тело + пар.
Выше критической точки К четкой границы между паром и жидкостью нет.
Из p – t диаграммы видно, что при t > tкр изотермическим сжатием невозможно превратить пар в жидкость.
Особенностью p – t диаграммы является то, что область двухфазного состояния вещества изображается линией, а не площадью.