
- •1.Пользование диаграммами Фирсова и Пирсона. Подготовить и показать на нескольких примерах.
- •2.Расчёт водоизмещения (массы) и координат цт.
- •3.Остойчивость на больших углах крена. Диаграмма статической остойчивости. Особенности диаграммы.
- •4.Определение угла крена по диаграмме при заданном.
- •5.Определить по диаграммепри заданном угле крена.
- •6.Определить статический опрокидывающий момент по диаграмме .
- •7.Свойство касательной к диаграмме при.
- •8. Плечи статической остойчивости формы и веса
- •10. Зависимость формы диаграммы от h
- •11. Построение диаграммы l статического по универсальной диаграмме
- •12. Требования Регистра Судоходства к диаграмме статической остойчивости
- •13. Требования Регистра Судоходства к метацентрической высоте и критерию ускорения.
- •14. Построение диаграммы l статического с помощью пантакорен
- •15. Требования Правил Регистра к диаграмме статической остойчивости
- •16. Требования имо к остойчивости.
- •17. Влияние жидких грузов на остойчивость. Вывод формулы.
- •18. Динамическая остойчивость. Динамический угол крена. Условие определения.
- •19. Определение θд по диаграмме статической остойчивости.
- •20.Ддо, ее свойства.
- •21.Определение Ɵd по ддо
- •22.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lст
- •23.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lд.
- •24. Определение опрокидывающего момента при качке судна по диаграмме lст
- •25. Определение опрокидывающего момента при качке судна по диаграмме ld
- •26. Связь диаграмм статической и динамической остойчивости
- •27. Контроль общей прочности судов различной длины
- •29. Построение эпюр изгибающих моментов перерезывающих сил и изгибающих моментов и сил. Пользование эпюрами.
- •30. Силы действующие на корпус судна в общем случае.
- •31.Проверка общей прочности с помощью диаграммы контроля общей прочности
- •32.Местная прочность Контроль местной прочности
- •34.Эквивалентный брус, геометрические характеристики сечения
- •35.Влияние износа корпуса на общую и местную прочность. Как изменяется прочность судна с течением времени? Марки судостроительных сталей.
- •36.Распределение нормальных и касательных напряжений по длине и высоте корпуса у судов разных типов
- •37.Непотопляемость. Конструктивные методы обеспечения непотопляемости.
- •45. Геометрия винта.
- •46.Средства повышения эффективности гребного винта и руля.
- •47.Требования Регистра Судоходства к диаграмме статической остойчивости.
- •48. Пользование чертежом размещения грузов.
- •49. Массовые и объемные характеристики судна.
- •50. Продольная остойчивость. Метацентрические формулы.
- •51.Диаграмма изменения осадок от приема 100 т груза.
22.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lст
Отыскание Мопр сводиться к определению такой горизонтали AF которая ограничивает площадь сегмента BCF, равную площади OAB. При этом определяеться и приельный динамический угол крена Ɵмах. Момент больше ОА, будет больше востонавливающего и судно опрокинеться.
23.Определение динамического опрокидывающего момента при прямом начальном положении по диаграмме Lд.
Для определения опрокидывающего момента нужно провести касательную к ДДО. Точка соприкосновения даст М опр как ординату касательной. При этом абсцисса точки касания определит наибольший динамический угол крена Ɵопр.
24. Определение опрокидывающего момента при качке судна по диаграмме lст
Остойчивость на больших углах крена. По мере увеличения крена судна восстанавливающий момент сначала возрастает, затем уменьшается, становится равным нулю и далее не только не препятствует наклонению, а наоборот, способствует ему (рис. 6).
Рис. 6. Диаграмма статической остойчивости.
Так как водоизмещение для данного состояния нагрузки постоянно, то восстанавливающий момент изменяется только вследствие изменения плеча поперечной остойчивости lст. По расчетам поперечной остойчивости на больших углах крена строят диаграмму статической остойчивости, представляющую собой график, выражающий зависимость lст от угла крена. Диаграмму статической остойчивости строят для наиболее характерных и опасных случаев нагрузки судна.
25. Определение опрокидывающего момента при качке судна по диаграмме ld
Из точки А проводится касательная АС к диаграмме динамической остойчивости, и от точки А на прямой, параллельной оси абсцисс, откладывается отрезок АВ, равный одному радиану. Из точки В восстанавливаем перпендикуляр ВЕ до пересечения с касательной АС в точке Е. Отрезок ВЕ равен плечу lопр опрокидывающего момента, если диаграмма
построена в масштабе плеч. Опрокидывающий момент
Mc = 9, 81 ·∆ · lопр, кН × м.
26. Связь диаграмм статической и динамической остойчивости
Диаграммы статической и динамической остойчивости
Обычно в судовых условиях строят диаграмму динамической остойчивости по известной диаграмме статической остойчивости, схема вычислений плеч динамической остойчивости приведена в табл:
Диаграмма динамической остойчивости
При построении диаграммы динамической остойчивости по результатам вышеприведенной таблицы динамический кренящий момент принимают постоянным по углам крена. Следовательно, его работа находится в линейной зависимости от угла θ, а график произведения f(θ) = 1кр*θ изобразится на диаграмме динамической остойчивости прямой наклонной линией, проходящей через начало координат. Для ее построения достаточно провести вертикаль через точку, отвечающую крену в 1 радиан и отложить на этой вертикали заданное плечо 1кр. Прямая, соединяющая таким образом точку Е с началом координат О представит искомый график f(θ) =1кр*θ , т. е. график работы кренящего момента, отнесенный к силе веса судна Р. Эта прямая пересечет диаграмму динамической остойчивости в точках А и В. Абсцисса точки А определяет угол динамического крена θ, при котором имеет равенство работ кренящего и восстанавливающего моментов.
Точка В практического значения не имеет.