- •И.А. Бурмака, а.В. Кирис, н.А. Козьминых Судовые энергетические установки и электрооборудование судов
- •Оглавление
- •4. Судовые паровые и газовые турбины 60
- •5. Судовые вспомогательные установки и механизмы 64
- •6. Судовые системы, передачи и валопровод 115
- •7. Судовое электрооборудование 131
- •Список литературы 138
- •Введение
- •1. Теоретические основы работы тепловых двигателей
- •1.1. Преобразование энергии в тепловых двигателях. Рабочее тело
- •1.2. Законы термодинамики
- •1.3. Параметры и процессы изменения состояния рабочего тела
- •1.4. Циклы двигателей внутреннего сгорания
- •1.5. Цикл Карно. Анализ влияния характеристик циклов двс на их кпд
- •1.6. Схема работы и цикл простейшей газотурбинной установки (гту)
- •1.7. Схема работы и цикл трехступенчатого компрессора
- •1.8. Парообразование в судовых котлах
- •1.9. Схема работы и цикл и простейшей паротурбинной установки
- •1.10. Основные понятия теплопередачи
- •2. Судовое пароэнергетическое оборудование
- •2.1. Классификация и показатели работы котельных установок
- •2.2. Газотрубные котлы
- •2.3. Принцип работы водотрубного котла
- •2.4. Вертикальный водотрубный парогенератор с естественной циркуляцией
- •2.5. Вспомогательные водотрубные котлы с принудительной циркуляцией
- •2.6. Водный режим паровых котлов
- •2.7. Топливо и его свойства
- •2.8. Топочные устройства
- •2.9. Тягодутьевые устройства
- •3. Судовые двигатели внутреннего сгорания
- •3.1. Устройство двигателя внутреннего сгорания (двс)
- •3.2. Классификация и маркировка двс
- •3.3. Принцип действия четырехтактных двс
- •3.4. Газораспределение четырехтактных дизелей
- •3.5. Принцип действия двухтактных дизелей
- •3.6. Индикаторные показатели работы двс
- •3.7. Эффективные показатели двс
- •3.8. Сравнение двух– и четырехтактных дизелей
- •3.9. Пути повышения мощности двс
- •3.10. Наддув дизелей
- •3.11. Газораспределение и продувка двухтактных дизелей
- •3.12. Образование горючей смеси в дизелях
- •3.13. Утилизация теплоты на морских судах
- •4. Судовые паровые и газовые турбины
- •4.1. Принцип действия паровых турбин
- •4.2. Активные и реактивные паровые турбины
- •4.3. Многоступенчатые турбины
- •4.4. Газовые турбины
- •5. Судовые вспомогательные установки и механизмы
- •5.1. Назначение и классификация теплообменных аппаратов
- •5.2. Основы расчета теплообменных аппаратов
- •5.3. Конструкции теплообменных аппаратов
- •5.4. Назначение и классификация судовых холодильных установок
- •5.5. Схемы работы судовых холодильных установок Одноступенчатая холодильная установка
- •Холодильные установки судов для перевозки сжиженных газов
- •Конструкции элементов холодильной установки
- •5.6. Общие сведения о судовых насосах и их классификация
- •5.7. Насосы объемного принципа действия
- •5.7.1. Поршневые насосы
- •5.7.2. Роторные насосы
- •5.8. Насосы гидродинамического действия
- •5.8.1. Центробежные насосы
- •5.8.2. Осевые насосы
- •5.8.3. Струйные насосы
- •5.9. Судовые палубные механизмы и устройства
- •5.9.1. Якорные и швартовные устройства
- •5.9.2. Грузовые устройства и люковые закрытия
- •5.10. Судовые рулевые машины
- •5.10.1. Назначение рулевых машин и требования к ним
- •5.10.2. Электрогидравлические рулевые машины
- •5.10.3. Телепередачи рулевых машин
- •6. Судовые системы, передачи и валопровод
- •6.1. Система смазки
- •6.2. Система охлаждения
- •6.3. Топливная система
- •6.4. Система сжатого воздуха
- •6.5. Система газовыпуска
- •6.6. Осушительная, балластная и противопожарная системы
- •6.7. Система вентиляции и кондиционирования воздуха
- •6.8. Система отопления
- •6.9. Передачи
- •6.9.1. Механические передачи
- •6.9.2. Электропередачи
- •6.9.3. Гидродинамические муфты
- •6.10. Валопровод
- •6.10.1. Назначение и устройство валопровода
- •6.10.2. Особенности работы валопровода
- •7. Судовое электрооборудование
- •7.1. Требования к судовому электрооборудованию
- •7.2. Гребные электрические установки
- •Список литературы
- •Суднові енергетичні установки та електрообладнання суден
- •65029, М. Одеса, Дідріхсона,8, корп.7
2.9. Тягодутьевые устройства
Для горения в топке котла топлива необходим непрерывный подвод в топку воздуха и отвод продуктов сгорания. При движении как воздух так и продукты сгорания преодолевают сопротивления при прохождении: воздуха через воздухоподогреватель и воздухонаправляющее устройство топки; продуктов сгорания через пучки кипятильных труб, экономайзер и воздухоподогреватель, а также через дымовую трубу. Определенная затрата энергии необходима также для создания некоторой скорости выхода продуктов сгорания из дымовой трубы.
Все сопротивления на пути воздуха и газов в котле преодолеваются силой тяги и нагнетания. В этой связи различают самотягу – естественную тягу с помощью дымовой трубы, и искусственную (дутье) создаваемую вентилятором.
Сущность самотяги можно пояснить следующим примером. Пусть высота дымовой трубы от середины топки (оси расположения форсунки), равна Н, м. Пусть г – это плотность продуктов сгорания (при их температуре tг), а в – это плотность подаваемого в топку воздуха при температуре tв. Тогда столб воздуха высотой Н на входе в топку будет создавать давление вgН. Этому давлению противодействует давление горячих продуктов сгорания величиной гgН, т.е., так как плотность продуктов сгорания меньше плотности воздуха (из-за того, что tг > tв), создается естественная тяга
h = вgН – гgН = Нg (в – г). (5)
Эта формула объясняет причину установки высоких труб (в стационарной теплоэнергетике и на судах старой постройки) чем выше труба, тем больше тяга. Раньше самотяга была единственным способом преодоления сопротивлений, в настоящее время все современные котлы работают с искусственной тягой, комбинируемой с самотягой.
3. Судовые двигатели внутреннего сгорания
3.1. Устройство двигателя внутреннего сгорания (двс)
Первый промышленный ДВС (двухтактный, работающий на газе с воспламенением от искры) был сконструирован в 1860 г. Ленуаром (Франция). В 1876 г. Отто создал четырехтактный газовый ДВС.
Первый экспериментальный ДВС с самовоспламенением (от сжатия) сконструирован Р. Дизелем в 1897 г. и с 1999 начал промышленно изготавливаться на заводе Нобеля после существенной переработки конструкции под работу на нефти (вместо керосина). На первом русском дизеле N = 18 кВт расход нефти составлял 0,3 кг/ кВт ч, что достигнуто применением механического (вместо компрессорного) распыла топлива и работой двигателя по циклу Тринклера.
Двигателями внутреннего сгорания называются тепловые двигатели, у которых топливо сгорает внутри цилиндра.
На рис. 21 показан поперечный разрез четырехтактного дизеля. Цилиндр 8, имеющий сменную втулку 9, охлаждается водой (3 – зарубашечное пространство), так как в этом цилиндре, закрытом крышкой 4 происходит сгорание топлива. Цилиндр опирается на станину 5, которая установлена на фундаментную рамку 16. Рамка крепится к фундаментным балкам, составляющим часть набора днища судна. Картером 14 называется пространство, ограниченное станиной и фундаментной рамой. Перечисленные выше части составляют неподвижный остов двигателя.
Поршень 9, имеющий компрессионные (верхние) и маслораспределительные (нижние) кольца, совершает возвратно-поступательные движения от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ), производя работу при расширении продуктов сгорания, которые образуются при положении поршня около ВМТ. Объем цилиндра при положении поршня в ВМТ образует камеру сгорания. Объем цилиндра над поршнем (поршень движется) называется описываемым объемом.
Движение поршня передается коленчатому валу через шатун 11, который верхним концом крепится к поршню головным подшипником, охватывающим палец 10, а нижним – к мотылевой шейке 12, которая уже является частью коленчатого вала. С помощью такого соединения прямолинейное возвратно-поступательное движение поршня преобразует во вращательное движение коленчатого вала. Коленчатый вал вращается в рамовых подшипниках 17, охватывающих опорные шейки коленвала. Движущиеся части двигателя образуют его механизм движения. Коленчатый вал через зубчатую передачу приводит во вращение кулачковый вал 2, который кулачками 1 через толкатели 18 посредством коромысел 6 воздействует на стержни впускных и выпускных 7 клапанов, заставляя их открываться (каждый клапан управляется своим кулачком и количество последних соответствует количеству клапанов). Закрытие клапанов происходит под воздействием пружин (кулачковый вал, толкатели и коромысло выпускного клапана не показаны).

В
описываемом двигателе боковые усилия,
возникающие при движении шатуна (который
не только перемещается по вертикали,
но и совершает маятниковое движения),
передаются стенкам цилиндра. Поршень
в данном случае выполняет функции
ползуна и для уменьшения его давления
на стенке цилиндра поршень имеет
удлиненную юбку, которая называется
тронком, и такие двигатели называются
тронковыми.
Принципиальная схема работы крейцкопф-ного двигателя показана на рис. 22.
Он состоит из штока 2, который совершает возвратно-поступательные движения через саль-ник диафрагмы 7. Диафрагма герметично разде-ляет полости с повышенным давлением и темпе-ратурой воздуха и грязным «горелым» ци-линдровым маслом от пространства картера с чистым маслом, стекающим в циркуляционную систему от подшипников скольжения. Крейц-копфный подшипник 3 двигается между двумя параллелями 4 (если двигатель реверсивный; не реверсивный двигатель имеет одну параллель), которые и воспринимают боковые усилия Рн возникающие при движении шатуна 5 (сила, действующая со стороны крейцкопфного подшипника на параллель обозначена Рн, а действующая по штоку на мотылевый подшипник обозначена Рш. Точка 6 показывает место приложения этих сил).
