Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия (Восстановлен).docx
Скачиваний:
2969
Добавлен:
09.02.2016
Размер:
3.87 Mб
Скачать

4. Вторичная структура белков. Связи, стабилизирующие вторичную структуру.

Вторичная структура - это пространственное расположение полипептидной цепочки в виде α-спирали или β-складчатости безотносительно к типам боковых радикалов и их конформации. Она стабилизирована водородными связями, которые замыкаются между пептидными, амидными (-N-H) и карбонидными (-C=O)группами, т.е. входят в пептидную единицу, и дисульфидными мостиками между остатками цистеина

Полинг и Кори предложили модель вторичной структуры белка в виде левозакрученной α-спирали, в которой водородные связи замыкаются между каждой первой и четвертой аминокислотой, что позволяет сохранять нативную структуру белка, осуществление им простейших функций, защищать от разрушения. На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали составляет 0,54 нм. В образовании водородных связей принимают участие все пептидные группы, что обеспечивает максимальную стабильность, снижает гидрофильность и увеличивает гидрофобность белковой молекулы. Альфа-спираль образуется самопроизвольно и является наиболее устойчивой конформацией, отвечающей минимуму свободной энергии .

Полинг и Кори предложили и другую упорядоченную структуру - складчатый β- слой. В отличие от конденсированной α-спирали β- слои почти полностью вытянуты и могут располагаться как параллельно , так и антипараллельно 

В стабилизации данных структур также принимают участие дисульфидные мостики и водородные связи.

5. Третичная структура белков. Типы химических связей, участвующих в

формировании третичной структуры. Супервторичная структура. Доменная структура и

ее роль в функционировании белков. Роль шаперонов (белки теплового шока) в

формировании третичной структуры белков in vivo.

У большинства белков полипептидные цепи свернуты особым образом в компактную глобулу. Способ свертывания полипептидных цепей глобулярных белков называется третичной структурой. Третичная структура поддерживается уже обсуждавшимися выше связями трех типов — ионными, водородными и дисульфидными, а также гидрофобными взаимодействиями. В количественном отношении наиболее важны именно гидрофобные взаимодействия; белок при этом свертывается таким образом, чтобы его гидрофобные боковые цепи были скрыты внутри молекулы, а гидрофильные, наоборот, выставлены наружу

Супервторичная структура - это более высокий уровень организации белковой молекулы, представленный ансамблем взаимодействующих между собой вторичных структур

Некоторый специфический порядок чередова­ния вторичных структур наблюдается во многих разных по структуре и функциям белках и носит название супервторичной структуры.

Такие упорядоченные структуры часто обозначают как структурные мотивы, которые имеют специфические названия: «а-спираль—поворот—а-спи-раль», «лейциновая застежка-молния», «цинковые пальцы», «структура Р-бочонка» и др.

По наличию а-спиралей и b-структур глобуляр­ные белки могут быть разделены на 4 категории:

1.В первую категорию включены белки, в кото­рых имеются только а-спирали, например миоглобин и гемоглобин .

2.     Во вторую категорию включены белки, в кото­рых имеются а-спирали и b-структуры. ЛДГ.

3. В третью категорию включены белки, имею­щие только вторичную b-структуру. Такие структу­ры обнаружены в иммуноглобулинах, в ферменте супероксиддисмутазе

  4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное ко­личество регулярных вторичных структур. К таким белкам можно отнести небольшие богатые цистином белки или металлопротеины.

В ДНК-связывающих белках имеются общие виды супервторичных структур: «спираль—поворот—спираль», «лейциновая застежка-молния», «цинко­вые пальцы». ДНК-связывающие белки содержат центр связывания, комплементарный участку ДНК с определенной нуклеотидной последовательностью. Эти белки участвуют в регуляции действия генов.

«а- Спираль—поворот—а-спираль»

 

 

Двуспиральная структура ДНК имеет 2 бороздки: большую и малую. Большая бороздка хорошо при­способлена для связывания белков, имеющих не­большие спиральные участки.

В данный структурный мотив входят 2 ос-спирали: одна более короткая, другая более длинная, соеди­ненные поворотом полипептидной цепи.

Более короткая а-спираль располагается попе­рек бороздки ДНК, а более длинная а-спираль на­ходится в большой бороздке, образуя нековалентные специфические связи радикалов аминокислот с нуклеотидами ДНК.

«Цинковый палец»

«Цинковый палец» — фрагмент белка, содержа­щий около 20 аминокислотных остатков.

Атом цинка связан с радикалами 4 аминокислот: 2 остатков цистеина и 2 — гистидина.

В некоторых случаях вместо остатков гистидина находятся остатки цистеина.

Этот участок белка образует а-спираль, которая может специфично связываться с регуляторными участками большой бороздки ДНК.

Специфичность связывания индивидуального регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца».

«Лейциновая застежка-молния»

Взаимодействующие белки имеют а-спиральный участок, содержащий по крайней мере 4 ос­татка лейцина.

Лейциновые остатки расположены через 6 ами­нокислот один от другого.

Так как каждый виток а-спирали содержит 3,6-аминокислотного остатка, радикалы лейцина находятся на поверхности каждого второго витка.

Лейциновые остатки а-спирали одного белка могут взаимодействовать с лейциновыми остатка­ми другого белка (гидрофобные взаимодействия), соединяя их вместе .

Многие ДНК-связывающие белки взаимодейст­вуют с ДНК в виде олигомерных структур, где субъединицы связываются друг с другом «лейци­новыми застежками». Примером таких белков мо­гут служить гистоны.

Гистоны — ядерные белки, в состав которых вхо­дит большое количество положительно заряжен­ных аминокислот — аргинина и лизина (до 80%).

Молекулы гистонов объединяются в олигомерные комплексы, содержащие 8 мономеров с по­мощью «лейциновых застежек», несмотря на силь­ный положительный заряд этих молекул.

ДОМЕННАЯ СТРУКТУРА И ЕЕ РОЛЬ В ФУНКЦИОНИРОВАНИИ БЕЛКОВ 1.  Длинные полипептидные цепи часто складываются в несколько компактных, относительно независимых областей. Они имеют самостоятельную третичную структуру, напоминающую таковую глобулярных белков, и называются доменами. Благодаря доменной структуре белков легче формируется их трехмерная структура. 2.  Центры связывания белка с лигандом часто располагаются между доменами (например, центр связывания трипсина с его лигандом - пищевым белком). Разные домены в белке могут перемещаться относительно друг друга при взаимодействии с лигандом (например, в молекуле гексокиназы). В некоторых белках домены выполняют самостоятельные функции, связываясь с различными лигандами. Такие белки называются многофункциональными белками.

Правильное сворачивание ( фолдинг ) полипептидных цепей белков в клетках эукариот обеспечивается специфическими белками, называемыми шаперонами (chaperone). Шапероны необходимы для эффективного формирования третичной структуры полипептидных цепей других белков, но они не входят в состав конечной белковой структуры. 

Новосинтезированные белки после выхода с рибосом  для правильного функционирования должны укладываться в стабильные трехмерные структуры и оставаться такими на протяжении всей функциональной жизни клетки. Поддержание контроля качества структуры белка и осуществляется шаперонами, катализирующими укладку полипептидов. Сборка полипротеинов и укладка мультибелковых комплексов также осуществляется шаперонами. Шапероны связываются с гидрофобными участками неправильно уложенных белков, помогают им свернуться и достигнуть стабильной нативной структуры и, тем самым, предотвращают их включение в нерастворимые и нефункциональные агрегаты. В течение своей функциональной жизни белок может подвергаться различным стрессам и денатурации. Такие частично денатурированные белки могут стать, во-первых, мишенью протеаз, во-вторых, агрегировать и, в-третьих,  укладываться в нативную структуру с помощью шаперонов. Баланс и эффективность, с которой происходят эти три процесса, определяются соотношением компонентов, участвующих в этих реакциях

6. Активный центр белков и его специфическое взаимодействие с лигандом как основа биологической функции белков. Конформационная лабильность белков.Комплементарность взаимодействия белков с лигандами. Обратимость связывания.

Активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

1. Характеристика активного центра

Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

2. Многообразие лигандов

  • Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

  • существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

  • существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О2, транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют "простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо .

Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность.

7. Четвертичная структура белков. Особенности строения и функционирования олигомерных белков на примере гемоглобина. Кооперативные изменения конформации протомеров. Возможность регуляции биологической функции олигомерных белков аллостерическими лигандами.

Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не ковалентными связями, а неко-валентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами – от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых α- и двух β-полипептидных цепей, т.е. представляет собой тетрамер.

Кооперативные изменения конформации протомеров.

Изменение конформации , а следовательно и функциональных свойств всех протомеров олигомерного белка при присоединение лиганда только к одному из них носит название-кооперативные изменения конформации протомеров.

Аллостерическая регуляция. Фермент изменяет активность с помощью нековалентно связанного с ним эффектора. Связывание происходит в участке, пространственно удаленном от активного (каталитического) центра. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению определенной геометрии каталитического центра. Активность может увеличиться - это активация фермента, или уменьшиться - это ингибирование «Сообщение» о присоединении аллостерического активатора передается посредством конформационных изменений каталитической субъединице, которая становится комплементарной субстрату, и фермент «включается». При удалении активатора фермент вновь переходит в неактивную форму и «выключается». Аллостерическая регуляция является основным способом регуляции метаболических путей.