
- •Электротехника, электроника
- •Микропроцессорная техника
- •Содержание
- •Введение
- •Тематический план
- •Часть 1. Электротехника
- •1 Основные понятия и определения
- •1.1 Общие сведения
- •1.2 Резистивные элементы
- •1.3 Индуктивный и емкостный элементы
- •1.4 Источники постоянного напряжения
- •2 Электрические цепи постоянного тока
- •2.1 Общие сведения
- •2.2 Законы Кирхгофа
- •2.2.1 Первый закон Кирхгофа
- •2.2.2 Второй закон Кирхгофа
- •2.3 Методы расчета линейных электрических цепей
- •2.3.1 Расчет цепей с использованием законов Кирхгофа
- •2.3.2 Метод контурных токов
- •2.4 Распределение потенциалов вдоль электрической цепи
- •2.5 Последовательное и параллельное соединения резистивных элементов
- •2.5.1 Последовательное соединение
- •2.5.2 Параллельное соединение
- •2.6 Электрическая энергия и мощность
- •2.7 Номинальные величины источников и приемников. Режимы работы электрических цепей
- •3 Линейные однофазные электрические цепи синусоидального тока
- •3.1 Основные величины, характеризующие синусоидальные ток, напряжение и эдс
- •3.1.1 Мгновенное значение
- •3.1.2 Действующее и среднее значения синусоидальных токов и напряжений
- •3.1.3 Изображение синусоидальных токов, напряжений и эдс комплексными числами и векторами
- •3.2 Элементы электрических цепей синусоидального тока
- •3.2.1 Резистивный элемент (рэ)
- •3.2.2 Индуктивный элемент
- •3.2.3 Емкостный элемент
- •3.3 Расчет неразветвленной электрической цепи синусоидального тока
- •3.4 Мощность в линейных цепях синусоидального тока
- •4 Трехфазные линейные электрические цепи синусоидального тока
- •4.1 Трехфазный источник электрической энергии
- •4.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •4.3 Соединение приемника по схеме «треугольник»
- •4.4 Мощность трехфазной цепи
- •4.4.1 Трехфазная электрическая цепь с симметричным приемником
- •5 Электрические трансформаторы
- •5.1 Общие сведения
- •5.2 Принцип действия электрического трансформатора
- •5.3 Работа электрического трансформатора в режиме холостого хода
- •5.4 Опыт короткого замыкания
- •5.5 Мощность потерь в трансформаторе
- •5.6 Автотрансформаторы
- •6 Электрические машины
- •6.1 Общие сведения
- •6.2 Вращающееся магнитное поле
- •6.3 Асинхронные машины
- •6.3.1 Принцип действия асинхронного двигателя (ад)
- •6.3.2 Устройство асинхронного двигателя
- •6.3.3 Характеристики асинхронного двигателя
- •6.4 Машины постоянного тока
- •6.4.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •6.4.2 Эдс обмотки якоря и электромагнитный момент
- •6.4.3 Электрические двигатели постоянного тока
- •6.4.4 Способы регулирования скорости двигателя постоянного тока
- •6.4.5 Пуск электродвигателей постоянного тока
- •Часть 2 электроника
- •1 Пассивные элементы электронных схем
- •1.1 Резисторы
- •Резисторы постоянного сопротивления. Углеродистые резисторы (блп) – резистивный элемент которых представляет собой тонкую пленку углерода, осажденную на основание из керамики.
- •1.2 Конденсаторы
- •1.3 Катушки индуктивности
- •1.4 Трансформаторы
- •2 Физические основы полупроводниковых приборов
- •2.1 Зонная теория твердого тела
- •2.2 Собственная электропроводность полупроводников
- •2.3 Примесные полупроводники
- •2.4 Полупроводниковые резисторы
- •2.5 Электронно-дырочный переход
- •2.5.1 Полупроводниковый p-n-переход в отсутствие внешних напряжений
- •2.5.2 Прямое смещение p-n-перехода
- •2.5.3 Обратное смещение p-n-перехода
- •3 Полупроводниковые приборы
- •3.1 Диоды
- •3.1.1 Выпрямительные диоды
- •3.1.2 Кремниевые стабилитроны
- •Обозначения полупроводниковых диодов состоят из пяти элементов.
- •3.2 Транзисторы
- •3.2.1 Полевые транзисторы
- •3.2.1.1 Полевые транзисторы с p-n-переходом
- •Внутреннее (выходное)сопротивление полевого транзистора
- •3.2.2 Биполярные транзисторы
- •3.3 Тиристоры
- •3.3.1 Устройство и принцип действия
- •3.3.2 Основные параметры тиристоров
- •3.3.3 Симистор
- •4 Операционный усилитель
- •4.1 Основные параметры и характеристики
- •4.2 Устройства на базе операционных усилителей
- •4.3 Импульсные устройства на операционных усилителях
- •5 Выпрямительные устройства
- •5.1 Однофазные выпрямители на полупроводниковых диодах
- •Цифровые устройства
- •6 Логические функции и устройства
- •6.1 Основные логические операции и их реализация
- •6.2 Триггеры
- •6.3 Цифровые счетчики импульсов
- •6.4 Регистры
- •6.5 Дешифраторы
- •6.6 Мультиплексоры
- •6.7 Постоянные запоминающие устройства (пзу)
- •7 Микропроцессоры
- •Список использованной литературы
- •Электротехника, электроника и микропроцессорная техника
- •98309 Г. Керчь, Орджоникидзе, 82.
4.3 Импульсные устройства на операционных усилителях
Широкое применение для построения импульсных (пороговых) усилителей нашли операционные усилители (ОУ), которые в этих устройствах работают на нелинейных участках характеристики (участках насыщения). Выходное напряжение ОУ может принимать одно из двух значений: U+вых.max или Uвых.max. Это связано с тем, что уровни входных напряжений релейных усилителей намного превышают максимальное входное напряжение, при котором ОУ может работать в режиме усиления.
Напомним, что максимальное входное напряжение (разность между напряжением на прямом входе Uпр и на инвертирующем входе Uинв), при котором ОУ может работать в режиме усиления, составляет сотые доли милливольт.
Если напряжение на входе ОУ выходит за пределы максимального (которое можно считать равным нулю), то ОУ переходит в режим насыщения и выходное напряжение принимает одно из двух значений: U+вых.max или Uвых.max, - величина которых определяется величиной напряжений источников питания +Еп и –Еп. Таким образом, напряжение на выходе ОУ будет равно U+вых.max, если Uпр - Uинв > 0 и Uвых.max, если Uпр - Uинв < 0.
На рис. 4.9 представлены типовые схемы применения ОУ в качестве порогового усилителя (компаратора). На рис. 4.9, а показан инвертирующий компаратор, на прямой вход которого подано опорное напряжение Uоп, а на инвертирующий вход – входное напряжение Uвх. Пока напряжение на инвертирующем входе Uвх меньше, чем на прямом входе Uоп (Uпр - Uинв > 0), на выходе ОУ сохраняется максимальное положительное напряжение U+вых.max. Когда напряжение на инвертирующем входе Uвх сравняется с опорным и станет чуть больше (Uпр - Uинв < 0), выходное напряжение ОУ изменит знак и станет равным Uвых.max. Дальнейшее увеличение входного напряжения не изменит состояния ОУ. Таким образом, состояние ОУ зависит от соотношения входного и опорного напряжений. Изменяя опорное напряжение можно менять порог срабатывания компаратора.
На рис. 4.9, б показаны
схема и передаточная характеристика
неинвертирующего компаратора. Здесь
соотношению Uвх
– Uоп
< 0
соответствует соотношение Uпр
- Uинв
< 0 и в этом
случае выходное напряжение ОУ равно
Uвых.max.
При увеличении входного напряжения
сверх Uоп
соотношение между Uпр
и Uинв
ОУ меняется на противоположное Uпр
- Uинв
> 0 и выходное
напряжение становится равным U+вых.max.
Широкое применение
получили также компараторы, в которых
ОУ охвачен положительной обратной
связью (рис. 4.10, а). Такой компаратор
обладает характеристикой с гистерезисом
(рис. 4.10, б). Схема известна под названием
триггер
Шмитта.
Переключение схемы в состояние Uвых.max происходит при достижении входным напряжением Uвх напряжения порога срабатывания Uср, а возвращается в исходное состояние U+вых.max – при снижении Uвх до напряжения порога отпускания Uотп. Значения пороговых напряжений найдем, учитывая, что переключение схемы происходит, когда Uпр - Uинв = 0
откуда ширина зоны гистерезиса
.
Важнейшим показателем операционных усилителей, работающих в импульсном режиме, является их быстродействие, которое оценивается задержкой срабатывания и временем нарастания выходного напряжения. Задержка срабатывания (время задержки выходного импульса) ОУ общего применения составляет единицы микросекунд, а время нарастания выходного напряжения – доли микросекунды.
Лучшим быстродействием обладают специализированные ОУ, предназначенные непосредственно для импульсного режима работы и получившие общее название “компараторы”.
Симметричный
мультивибратор на ОУ.
Основой
схемы мультивибратора (рис. 4.11, а) служит
компаратор на ОУ с положительной обратной
связью. Автоколебательный режим работы
создается за счет подключения к
инвертирующему входу времязадающей
цепи из конденсатора С
и резистора R.
Принцип действия схемы иллюстрируют
временные диаграммы, приведенные на
рис. 4.11, б.
Допустим, что перед включением питания конденсатор С разряжен до нуля, и тогда после включения питания на выходе ОУ установится, например, максимальное положительное напряжение U+вых.max, поддерживаемое действием положительной обратной связи с выхода ОУ на прямой вход через резистор R1. Это напряжение поступает на цепочку RC, создавая ток заряда конденсатора С. Напряжение UC на конденсаторе, подключенном к инвертирующему входу ОУ, начинает увеличиваться. На прямой вход ОУ поступает напряжение UR2 с делителя R1, R2, подключенного к выходу ОУ. Когда напряжение UC на конденсаторе С чуть превысит напряжения на UR2 на делителе R1, R2 (это соответствует состоянию на входах ОУ Uпр - Uинв < 0), ОУ перейдет в состояние с максимальным отрицательным выходным напряжением Uвых.max. Одновременно с этим напряжение UR2 на делителе R1, R2 изменит свой знак на противоположный. С этого момента начинается перезаряд конденсатора С в обратном направлении, так как на цепочку RC поступает уже отрицательное напряжение с выхода ОУ. Напряжение на конденсаторе UC уменьшается и когда оно станет чуть меньше напряжения UR2 (что соответствует состоянию на входах ОУ Uпр - Uинв > 0), ОУ возвратится в состояние с максимальным положительным напряжением U+вых.max. Далее процессы в схеме повторяются.
Контрольные вопросы:
1. Операционный усилитель. Структурная схема. УГО. Основные характеристики. Использование операционных усилителей (ОУ) с обратными связями.
2. Схемы усилителей, сумматоров, интеграторов на ОУ. Передаточные характеристики.
Литература: [5, 6, 8, 9].