- •Электротехника, электроника
- •Микропроцессорная техника
- •Содержание
- •Введение
- •Тематический план
- •Часть 1. Электротехника
- •1 Основные понятия и определения
- •1.1 Общие сведения
- •1.2 Резистивные элементы
- •1.3 Индуктивный и емкостный элементы
- •1.4 Источники постоянного напряжения
- •2 Электрические цепи постоянного тока
- •2.1 Общие сведения
- •2.2 Законы Кирхгофа
- •2.2.1 Первый закон Кирхгофа
- •2.2.2 Второй закон Кирхгофа
- •2.3 Методы расчета линейных электрических цепей
- •2.3.1 Расчет цепей с использованием законов Кирхгофа
- •2.3.2 Метод контурных токов
- •2.4 Распределение потенциалов вдоль электрической цепи
- •2.5 Последовательное и параллельное соединения резистивных элементов
- •2.5.1 Последовательное соединение
- •2.5.2 Параллельное соединение
- •2.6 Электрическая энергия и мощность
- •2.7 Номинальные величины источников и приемников. Режимы работы электрических цепей
- •3 Линейные однофазные электрические цепи синусоидального тока
- •3.1 Основные величины, характеризующие синусоидальные ток, напряжение и эдс
- •3.1.1 Мгновенное значение
- •3.1.2 Действующее и среднее значения синусоидальных токов и напряжений
- •3.1.3 Изображение синусоидальных токов, напряжений и эдс комплексными числами и векторами
- •3.2 Элементы электрических цепей синусоидального тока
- •3.2.1 Резистивный элемент (рэ)
- •3.2.2 Индуктивный элемент
- •3.2.3 Емкостный элемент
- •3.3 Расчет неразветвленной электрической цепи синусоидального тока
- •3.4 Мощность в линейных цепях синусоидального тока
- •4 Трехфазные линейные электрические цепи синусоидального тока
- •4.1 Трехфазный источник электрической энергии
- •4.2 Анализ электрических цепей при соединении трехфазного источника и приемника по схеме «звезда» с нулевым проводом
- •4.3 Соединение приемника по схеме «треугольник»
- •4.4 Мощность трехфазной цепи
- •4.4.1 Трехфазная электрическая цепь с симметричным приемником
- •5 Электрические трансформаторы
- •5.1 Общие сведения
- •5.2 Принцип действия электрического трансформатора
- •5.3 Работа электрического трансформатора в режиме холостого хода
- •5.4 Опыт короткого замыкания
- •5.5 Мощность потерь в трансформаторе
- •5.6 Автотрансформаторы
- •6 Электрические машины
- •6.1 Общие сведения
- •6.2 Вращающееся магнитное поле
- •6.3 Асинхронные машины
- •6.3.1 Принцип действия асинхронного двигателя (ад)
- •6.3.2 Устройство асинхронного двигателя
- •6.3.3 Характеристики асинхронного двигателя
- •6.4 Машины постоянного тока
- •6.4.1 Общие понятия об устройстве машин постоянного тока и принципе их действия
- •6.4.2 Эдс обмотки якоря и электромагнитный момент
- •6.4.3 Электрические двигатели постоянного тока
- •6.4.4 Способы регулирования скорости двигателя постоянного тока
- •6.4.5 Пуск электродвигателей постоянного тока
- •Часть 2 электроника
- •1 Пассивные элементы электронных схем
- •1.1 Резисторы
- •Резисторы постоянного сопротивления. Углеродистые резисторы (блп) – резистивный элемент которых представляет собой тонкую пленку углерода, осажденную на основание из керамики.
- •1.2 Конденсаторы
- •1.3 Катушки индуктивности
- •1.4 Трансформаторы
- •2 Физические основы полупроводниковых приборов
- •2.1 Зонная теория твердого тела
- •2.2 Собственная электропроводность полупроводников
- •2.3 Примесные полупроводники
- •2.4 Полупроводниковые резисторы
- •2.5 Электронно-дырочный переход
- •2.5.1 Полупроводниковый p-n-переход в отсутствие внешних напряжений
- •2.5.2 Прямое смещение p-n-перехода
- •2.5.3 Обратное смещение p-n-перехода
- •3 Полупроводниковые приборы
- •3.1 Диоды
- •3.1.1 Выпрямительные диоды
- •3.1.2 Кремниевые стабилитроны
- •Обозначения полупроводниковых диодов состоят из пяти элементов.
- •3.2 Транзисторы
- •3.2.1 Полевые транзисторы
- •3.2.1.1 Полевые транзисторы с p-n-переходом
- •Внутреннее (выходное)сопротивление полевого транзистора
- •3.2.2 Биполярные транзисторы
- •3.3 Тиристоры
- •3.3.1 Устройство и принцип действия
- •3.3.2 Основные параметры тиристоров
- •3.3.3 Симистор
- •4 Операционный усилитель
- •4.1 Основные параметры и характеристики
- •4.2 Устройства на базе операционных усилителей
- •4.3 Импульсные устройства на операционных усилителях
- •5 Выпрямительные устройства
- •5.1 Однофазные выпрямители на полупроводниковых диодах
- •Цифровые устройства
- •6 Логические функции и устройства
- •6.1 Основные логические операции и их реализация
- •6.2 Триггеры
- •6.3 Цифровые счетчики импульсов
- •6.4 Регистры
- •6.5 Дешифраторы
- •6.6 Мультиплексоры
- •6.7 Постоянные запоминающие устройства (пзу)
- •7 Микропроцессоры
- •Список использованной литературы
- •Электротехника, электроника и микропроцессорная техника
- •98309 Г. Керчь, Орджоникидзе, 82.
2 Физические основы полупроводниковых приборов
2.1 Зонная теория твердого тела
Полупроводниками называют вещества, занимающие по электропроводности промежуточное положение между металлами (проводниками) и диэлектриками. Чистые полупроводники по электропроводности ближе к диэлектрикам. Особенность электропроводности полупроводников обусловлена спецификой распределения электронов по энергетическим уровням атомов.
Вследствие взаимодействия атомов друг с другом в кристалле разрешенные уровни энергии электронов соседних атомов смещаются, образуя близко расположенные смещенные уровни энергии – подуровни. Подуровни образуют так называемые зоны разрешенных уровней энергии, которые отделены друг от друга запрещенными зонами.
На электропроводность твердого тела существенное значение оказывает расположение двух соседних зон разрешенных уровней энергии в верхней части энергетической диаграммы (рис. 2.1, а), где В – валентная зона, все уровни которой при температуре абсолютного нуля заполнены электронами, С – зона свободных электронов (зона проводимости), на уровни которой могут переходить электроны из валентной зоны при возбуждении атома, и З – запрещенная зона, энергетические уровни в которой отсутствуют. Наличие запрещенной зоны означает, что для перехода в зону проводимости электрону необходимо сообщить энергию, большую, чем величина ∆W.
У металлов
запрещенная зона отсутствует (∆W=0)
и валентная зона непосредственно
примыкает к зоне проводимости. Поэтому
в металлах число свободных электронов
велико, что и обеспечивает их высокую
электро- и теплопроводность. У диэлектриков
ширина запрещенной зоны велика (∆W>3
эВ) и при температурах ниже 400-800ºС и в
отсутствие сильных электрических полей
электроны проводимости практически
отсутствуют.
Ширина запрещенной зоны у наиболее распространенных полупроводников – германия (Ge) и кремния (Si) – составляет соответственно 0,72 и 1,12 эВ. Эти полупроводники принадлежат кIVгруппе периодической таблицы элементов Менделеева и имеют четыре валентных электрона. В кристалле полупроводника соседние атомы взаимодействуют между собой, образуя парноэлектронные связи. При этом внешняя электронная оболочка каждого атома содержит восемь электронов. Такая оболочка в атомах является наиболее прочной. На рис. 2.1, а показана двумерная модель кристаллической решетки кремния, где связи, образованные валентными электронами, обозначены двойными линиями.
ионы примесей
2.2 Собственная электропроводность полупроводников
Из-за относительно узкой запрещенной зоны у германия и кремния уже при комнатной температуре некоторые электроны получают энергию, достаточную, чтобы преодолеть запрещенную зону и перейти в зону проводимости. При уходе электрона в валентной зоне остается незаполненный энергетический уровень – дырка. В нормальном (не возбужденном) состоянии атом электрически нейтрален, так как положительный заряд ядра компенсируется соответствующим количеством электронов, имеющих отрицательный заряд. Поэтому уход одного электрона приводит к тому, что атом приобретает положительный заряд. Таким образом,дырка– это положительный заряд, равный по модулю заряду электрона. В кристаллической решетке при этом происходит разрыв одной из валентных связей и появление свободного электрона, который может свободно перемещаться по кристаллу, и дырки – носителя положительного заряда. Оборванная связь может быть восстановлена, если ее заполнит электрон из соседнего атома.
Процесс образования в чистом полупроводнике пары электрон-дырка получил название генерациисобственных носителей заряда. Одновременно с процессом генерации носителей заряда протекает процесс ихрекомбинации– встречи электронов с дырками, сопровождающийся возвратом электрона из зоны проводимости в валентную зону и исчезновением свободных зарядов.
Благодаря рекомбинации количество носителей заряда в полупроводнике не увеличивается и при постоянной температуре неизменно. Концентрации электронов niи дырокpi в чистом полупроводнике равны:pi = ni. В рабочем диапазоне температур концентрация электронов и дырок в чистом полупроводнике мала и по своим электрическим свойствам чистый полупроводник близок к диэлектрикам.
