Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ENGLISH Ез 3сем / Ез TEXTs.doc
Скачиваний:
9
Добавлен:
07.02.2016
Размер:
37.38 Кб
Скачать

Induction motors

An induction motor or asynchronous motor is a type of alternating current motor where power is supplied to the rotor by means of electromagnetic induction.

An electric motor converts electrical power to mechanical power in its rotor (rotating part). There are several ways to supply power to the rotor. In a DC motor this power is supplied to the armature directly from a DC source, while in an induction motor this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Unlike the normal transformer which changes the current by using time varying flux, induction motors use rotating magnetic fields to transform the voltage. The primary side's current creates an electromagnetic field which interacts with the secondary side's electromagnetic field to produce a resultant torque, thereby transforming the electrical energy into mechanical energy.

Induction motors are now the preferred choice for industrial motors due to their rugged construction, absence of brushes (which are required in most DC motors) and—thanks to modern power electronics—the ability to control the speed of the motor. The basic difference between an induction motor and a synchronous AC motor is that in the latter a current is supplied into the rotor (usually DC) which in turn creates a (circular uniform) magnetic field around the rotor. The rotating magnetic field of the stator will impose an electromagnetic torque on the still magnetic field of the rotor causing it to move (about a shaft) and rotation of the rotor is produced. It is called synchronous because at steady state the speed of the rotor is the same as the speed of the rotating magnetic field in the stator.

By way of contrast, the induction motor does not have any direct supply onto the rotor; instead, a secondary current is induced in the rotor. This changing magnetic field pattern induces current in the rotor conductors. These currents interact with the rotating magnetic field created by the stator and in effect causes a rotational motion on the rotor. However, for these currents to be induced, the speed of the physical rotor must be less than the speed of the rotating magnetic field in the stator, or else the magnetic field will not be moving relative to the rotor conductors and no currents will be induced. If by some chance this happens, the rotor typically slows slightly until a current is re-induced and then the rotor continues as before.

Squirrel-cage motors

There are two types of AC motors, depending on the type of rotor used. The first is the synchronous motor, which rotates exactly at the supply frequency. The magnetic field on the rotor is either generated by current delivered through slip rings or by a permanent magnet.

The second type is the induction motor, which runs slightly slower than the supply frequency. The magnetic field on the rotor of this motor is created by an induced current. Most common AC motors use the squirrel cage rotor, which will be found in virtually all domestic and light industrial alternating current motors. The motor takes its name from the shape of its rotor "windings"- a ring at either end of the rotor, with bars connecting the rings running the length of the rotor. It is typically cast aluminum or copper poured between the iron laminates of the rotor, and usually only the end rings will be visible. The vast majority of the rotor currents will flow through the bars rather than the higher-resistance and usually varnished laminates. Very low voltages at very high currents are typical in the bars and end rings; high efficiency motors will often use cast copper in order to reduce the resistance in the rotor.

In operation, the squirrel cage motor may be viewed as a transformer with a rotating secondary. When the rotor is not rotating in sync with the magnetic field, large rotor currents are induced; the large rotor currents magnetize the rotor and interact with the stator's magnetic fields to bring the rotor almost into synchronization with the stator's field. An unloaded squirrel cage motor at rated no-load speed will consume electrical power only to maintain rotor speed against friction and resistance losses; as the mechanical load increases, so will the electrical load - the electrical load is inherently related to the mechanical load. This is similar to a transformer, where the primary's electrical load is related to the secondary's electrical load. Furthermore, a stalled squirrel cage motor (overloaded or with a jammed shaft) will consume current limited only by circuit resistance as it attempts to start. Unless something else limits the current (or cuts it off completely) overheating and destruction of the winding insulation is the likely outcome.

In order to prevent the currents induced in the squirrel cage from superimposing itself back onto the supply, the squirrel cage is generally constructed with a prime number of bars, or at least a small multiple of a prime number (rarely more than 2). There is an optimum number of bars in any design, and increasing the number of bars beyond that point merely serves to increase the losses of the motor particularly when starting.

Virtually every washing machine, dishwasher, standalone fan, record player, etc. uses some variant of a squirrel cage motor.

Соседние файлы в папке ENGLISH Ез 3сем