
- •Міністерство освіти і науки україни
- •Перелік скорочень
- •5 Хвильові рівняння. Електродинамічні потенціали
- •5.1 Хвильові рівняння (рівняння Гельмгольця)
- •5.2 Векторний та скалярний потенціали. Вектор Герца
- •6 Плоскі електромагнітні хвилі
- •6.1 Загальні властивості плоских електромагнітних хвиль.
- •Параметр в загальному випадку комплексна величина
- •6.2 Плоскі хвилі в різноманітних однорідних ізотропних середовищах.
- •Характеристичний опір
- •7 Хвильові явища на межі розділу двох середовищ
- •7.2 Однорідна плоска хвиля, що розповсюджується у довільному напрямку.
- •7.5 Явище повного внутрішнього відбиття.
- •7.6 Імпедансні граничні умови (умови Леонтовича).
- •7.7 Повне відбиття і напрямлені хвилі.
- •Перелік посилань
- •Додаток а
- •А.4 Основні тотожності
- •Таблиця б.2 Основні характеристики діелектриків
Міністерство освіти і науки україни
Запорізький національний технічний університет
Л.М. Логачова, В.П. Дмитренко
К О Н С П Е К Т
лекцій з дисципліни
“Електродинаміка та поширення радіохвиль”
Частина 2
для студентів спеціальності 7090701 "Радіотехніка"
всіх форм навчання
Затверджено НМО
спеціальності як конспект лекцій
з дисципліни “Електродинаміка та
поширення радіохвиль”
Протокол №
2002
Конспект лекцій з дисципліни “Електродинаміка та поширення радіохвиль”, частина 2 для студентів спеціальності 7090701 “Радіотехніка” всіх форм навчання / Укл. Логачова Л.М., Дмитренко В.П. – Запоріжжя: ЗНТУ, 2002. - с.
Рекомендовано до видання як конспект лекцій з дисципліни “Електродинаміка та поширення радіохвиль”, “Теорія електричного поля” для студентів спеціальності 7090701 “Радіотехніка” на засіданні кафедри радіотехніки.
Протокол № від 2002 року
Укладачі:
Л.М. Логачова, ст. викладач
В.П. Дмитренко, доц., к.т.н.
Рецензент: В.П. Бондарєв, доц., к.т.н.
В.П. Дмитренко, доц., к.т.н.
Відповідальний за випуск: Л.М. Логачова, ст. викладач
зміст
5 Хвильові рівняння. Електродинамічні потенціали |
|
5.1 Хвильові рівняння (рівняння Гельмгольця) |
|
5.2 Векторний та скалярний потенціали. Вектор Герця |
|
6 Плоскі електромагнітні хвилі |
|
6.1 Загальні властивості плоских електромагнітних хвиль |
|
6.2 Плоскі хвилі в різноманітних однорідних ізотропних середовищах |
|
6.3 Поляризація електромагнітних хвиль |
|
7 Хвильові явища на межі розділу двох середовищ |
|
7.1 Нормальне падіння плоскої електромагнітної хвилі на діелектричний напівпростір |
|
7.2 Однорідна плоска хвиля, що розповсюджується у довільному напрямку |
|
7.3 Падіння плоскої електромагнітної хвилі на діелектричний на півпростір під довільним кутом |
|
7.4 Кут Брюстера |
|
7.5 Явище повного внутрішнього відбиття |
|
7.6 Імпедансні граничні умови (умови Леонтовича) |
|
7.7 Повне відбиття і напрямлені хвилі |
|
7.8 Плоскопаралельний хвилевід |
|
Перелік посилань |
|
Додаток А. Деякі відомості з векторного аналізу |
|
Додаток Б. Матеріали для хвилеводних пристроїв |
|
Перелік скорочень
ЕМП – електромагнітне поле
ЕЕМП – енергія електромагнітного поля
5 Хвильові рівняння. Електродинамічні потенціали
5.1 Хвильові рівняння (рівняння Гельмгольця)
В електродинаміці існують два класи задач:
прямі задачі
– необхідно визначити вектори
і
по відомим джерелам;
зворотні задачі– по заданому розподілу поля вимагається знайти його джерела;
Визначити вектори безпосередньо з рівнянь Максвела важко, тому їх необхідно перетворити так, щоб отримати диференційні рівняння більш зручні для розв’язку вказаних задач.
Вважаємо, що середовище
являється лінійним, однорідним і
ізотропним. Розглянемо систему рівнянь
Максвела разом з матеріальними рівняннями.
Візьмемо ротор від обох частин першого
рівняння Максвела і змінимо порядок
диференціювання за часом і координатами.
Враховуючи співвідношення
одержуємо
,
. (5.1)
Ліву частину рівняння (5.1) перетворимо за допомогою відомої векторної тотожності
, (5.2)
де
- оператор Лапласа.
В декартовій системі координат оператор Лапласа має вигляд
. (5.3)
З урахуванням (5.2), (5.3) перепишемо рівняння (5.1) в формі
. (5.4)
Через те, що
,
крім того
,
то (5.4) приймає вигляд
. (5.5)
Рівняння (5.5) еквівалентне трьом скалярним рівнянням
(5.6)
які відносяться до рівнянь вигляду
. (5.7)
Такі рівняння (5.7) описують хвильові процеси і називаються неоднорідними хвильовими рівняннями, або неоднорідними рівняннями Даламбера. В них параметр V дорівнює швидкості хвильового процесу.
Якщо f (x, y, z, t)=0 – то це однорідні рівняння Даламбера. Рівняння (5.5) і (5.7) відрізняються тільки тим, що функції, які входять в (5.5) - векторні. Тому рівняння вигляду (5.5) - називаються неоднорідними векторними рівняннями Даламбера. Якщо права частина дорівнює нулю, то вони - однорідні векторні рівняння Даламбера.
Для вектору
також можна вивести рівняння вигляду
(5.4), взявши ротор від обох частин другого
рівняння Максвела і виконавши аналогічні
перетворення.
(5.8)
Враховуючи, що
і вираз для2
(5.3), перепишемо рівняння (5.8) в вигляді
. (5.9)
Через те, що
,
а
,
то (5.9) приймає форму
(5.10)
В подальшому буде показане,
що множник
,
який входить в (5.4) і (5.10), являється
аналогом параметру V в (5.7). Якщо середовище
без втрат, то він відіграє роль швидкості
розповсюдження електромагнітного поля
і дорівнює швидкості світла V0
в середовищі, яке розглядається.
Якщо в області, яка розглядається,
є сторонні заряди і струми, то рівняння
(5.5) і (5.10) будуть мати вигляд для векторів
і
(5.11)
Вважаючи,
що електромагнітні процеси встановилися,
і середовище без втрат, в цьому випадку
=0,
=0,
,
то отримаємо з (5.11)
(5.12)
В випадку гармонійних полів, перейшовши у (5.12) до комплексних векторів, одержуємо
. (5.13)
де
– комплексна магнітна і діелектрична
проникність середовища.
Якщо в області простору, яка
розглядується будуть відсутні сторонні
струми і заряди
,
то (5.13) спрощується, і остаточно отримаємо
, (5.14)
. (5.15)
Рівняння вигляду (5.14) і (5.15) прийнято називати однорідними рівняннями Гельмгольца, а рівняння (5.13) – неоднорідними рівняннями Гельмгольца.
В рівняннях (5.14) і (5.15)
– комплексне число, яке являється
сталою розповсюдження
електромагнітної
хвилі. В літературі
цю величину називають
хвильовим числом
або
фазовою сталою.
В подальшому ця величина буде розглянута
детальніше.
На підставі рівнянь (5.14) і (5.15) можна зробити важливий висновок теорії Максвела – зміна в часі електричного і магнітного полів неминуче призводить до розповсюдження в просторі електромагнітних хвиль з деякою сталою частотою.
В координатній формі рівняння Гельмгольца, наприклад, (5.14) записується слідуючим чином
. (5.16)
Розв’язок системи (5.16) значно
спрощується, якщо поле не має яких-небудь
складових, наприклад,
,
а також, коли поле стале в будь-яких
площинах, наприклад,
(5.17)