Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тепт тех.docx
Скачиваний:
31
Добавлен:
06.02.2016
Размер:
275.09 Кб
Скачать
  1. Закон Кирхгофа.

Связь между излучательной и поглощательной способностями тел устанавливает закон Кирхгофа, который формулируется следующим образом: « Отношение излучательной способности какого-либо серого тела к его поглощательной способности одинаково для всех тел, находящихся при одинаковой температуре, и равно излучательной способности черного тела при той же температуре».

Если обозначить через q, q1, q2, q3 и т. д. плотности тепловых потоков излучения различных серых тел при одной и той же температуре Т, через А, А1, А2, А3 и т. д. поглощательные способности тех же серых тел при той же температуре Т и через q0 плотность теплового потока излучения абсолютно черного тела при той же температуре Т, то закон Кирхгофа можно записать следующим образом:

q/A= q1/A1=q2/A2=q3/A3=…..=q0=C0( T/100)4.

Отсюда следует, что q=AC0( T/100)4; тоже для q1, q2, q3 и т. д.

Если сравнить это уравнение с уравнением Стефана-Больцмана для излучения серого тела q=C0( T/100)4, то можно увидеть, А= и сделать вывод о том, что степень черноты численно равна поглощательной способности данного тела. Таким образом, степень черноты может характеризовать как излучательную, так и поглощательную способности тела. Если, например, степень черноты тела составляет 0,7, то это означает, что данное серое тело при одинаковых температурах излучает энергии на 30% меньше, чем абсолютно черное тело и поглотит 70% падающей на него тепловой энергии. Принято и буквой обозначать и поглощательную способность, поскольку они равнозначны.

Закон Кирхгофа справедлив не только для полного, но и для монохроматического излучения, что позволяет установить важное следствие из этого закона: « всякое тело при определенной температуре может испускать только лучи тех длин волн, которые оно способно поглощать при той же температуре».

  1. Особенности излучения и поглощения газами тепловой энергии.

Спектр поглощения газов является селективным. Это означает, что газы поглощают тепловую энергию в определенных интервалах длин волн , определяющих так называемые полосы поглощения. Как следует из закона Кирхгофа, газы могут испускать лучи только с теми длинами, что и лучи, которые они поглощают. Поэтому излучение газов является также селективным. Однако не все газы практически излучают и поглощают тепловые лучи. Спектр одно- и двухатомных газов ( кислорода, азота, окиси углерода и др.), встречающихся в составе печной атмосферы, состоит из очень низких полосок. Поэтому общее количество энергии, которое излучают эти газы, очень невелико и можно считать, что они совсем не излучают тепла.

Трехатомные и многоатомные газы, наоборот, могут излучать и поглощать большое количество тепла. Наибольшее практическое значение имеет излучение СО2 и водяных паров Н2О, поскольку из них (наряду с N2) в основном состоят дымовые газы. Спектры этих газов очень сложны. Для СО2 обычно принимают три полосы излучения и поглощения, соответствующие следующим интервалам длин волн, мкм: 2,3-3,02; 4,01-4,80 и 12,5-16,5.

Для Н2О эти интервалы длин волн равны 2,24-3,27; 4,8-8,5 и 12,0-25,0 мкм. В отличие от твердых тел, излучение и поглощение газами происходит в объеме (у твердых тел – с поверхности).

Поглощение газами тепловой энергии наблюдается в результате поглощения тепла встречающимися молекулами. Количество встречающихся молекул зависит от концентрации газа, выражаемой его парциальным давлением Р и эффективной толщиной газового слоя Sэф. Большое влияние оказывает также температура. Поэтому поглощение газами тепловой энергии Аг= f (T; P; Sэф). По закону Кирхгофа можно записать то же самое для степени черноты газов: г= f (T; P; Sэф), поскольку Аг= г.

Излучение газами тепловой энергии, как показали исследования, для СО2 пропорционально Т3,5, а для Н2О пропорционально Т3. Применение различных законов излучения для твердых и газообразных тел очень сильно затруднило бы расчет, поэтому для практических расчетов излучения газов также применяют закон Стефана-Больцмана: qг=г С0 (. Погрешность, вносимая допущением о том, что qг= f (Т4), учитывается при определении г [ в действительности, q= f(T3,5), q= f (T3)].

Определение степени черноты газов.

Как мы указывали ранее, степень черноты газов г зависит от температуры газа, его парциального давления и эффективной толщины газового слоя (средней длины пути луча). Обычно температура газов известна. Парциальное давление газов можно получить из расчета горения топлива. Например, если в продуктах горения содержится 10%СО2 и 15%Н2О, то, следовательно, их парциальные давления соответственно равны 0,1 и 0,15 общего давления печной среды (0,1ат, 0,15ат).

Эффективная толщина газового слоя (средняя длина луча) определяется по формуле: Sэф=0,9, м, где V – объем, заполненный излучающим газом, м3;

F – поверхность всех стенок, ограничивающих этот объем, м2;

0,9 – постоянный коэффициент.

Для определения степени черноты газов пользуются графиками, с помощью которых находят сначала степень черноты и условную степень черноты водяных паров . Условную степень черноты необходимо умножить на поправку и найти степень черноты =. Общую степень черноты газов находят суммированием полученных степеней черноты отдельных газов: г= + = + .