Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Agrokhimia.doc
Скачиваний:
475
Добавлен:
06.02.2016
Размер:
1.08 Mб
Скачать

1. Круговорот и баланс элементов питания в земледелии. Удобрения как объект изучения агрохимии. Классификация удобрений. Значение удобрений в повышении урожайности и качества продукции с-х культур, сохранении и повышении почвенного плодородия.

Агрономическая химия - это наука о взаимодействии растений, почв и удобрений в процессе питания с/х культур, о круговороте веществ в земледелии, и использовании удобрений для повышения урожая и повышения плодородия почвы.

Взаимосвязь объектов изучаемых в агрохимии (растений, почв, удобрений) Прянишников выразил в виде схемы – треугольник Прянишникова. означает взаимное влияние рассматриваемых объектов.

Позднее Журбицкий добавил 4 объект, т.к. взаимодействие 3 других объектов происходит в особенных климатических условиях.

Удобрение – это минеральные и/или органические вещества, предназначенные для улучшения питания растений в целях повышения качества и урожайности с/х культур. Действующее вещество (Д.В.) удобрений – это элемент питания содержащийся в удобрениях.

у азотных – N,у фосфорных – P2O5,у калийных – К2О.

Балласт - сопутствующее вещество.

Главная задача: управление круговоротом и балансом химических элементов в системе почва-растение.

Все разделы для понимания химических процессов рассматриваются для всех 3х объектов.

- растения (ботаника, физиология, биохимия)

- почва (почвоведение, микробиология (т.к. м/о содержащиеся в почве превращают питательные вещества в доступные для растения)

- удобрения, рациональное, агрономически правильное применение (растениеводство, плодоводство и д.р.

- экономика, необходимость экономической оценки применения (экономика, организация с/х производства)

Химизация земледелия – это внедрение удобрений в с/х (Прянишников)

Химизация земледелия – это широкое применение минеральных и органических удобрений, химических средств защиты, ретардантов (стимуляторы роста), структурообразователей, использование которых направлено на повышение урожайности и повышение качества продукции. Практика мирового земледелия свидетельствует, что мин. удобрения – это решающий фактор продуктивности. Данные НИИ показывают, что на 50% рост урожая при интенсификации земледелия определяется применением удобрений. Другие 50% приходятся на другие приемы (защита растений, агротехника, мелиорация, селекция). Таким образом, удобрения превосходят по эффективности другие используемые в с/х химические средства. Следовательно, агрохимия – научная основа химизации земледелия.

Классификация минеральных удобрений. Физико-механические свойства минеральных удобрений.

Классификация минеральных удобрений по физическому состоянию.

1. твердые удобрения (подавляющее большинство)

- порошки

- кристаллы

- гранулы

Например: мочевина, суперфосфат и т.д.

2. жидкие удобрения

Пример: сжиженный аммиак, водные растворы и суспензии.

Классификация минеральных удобрений по количеству основных элементов питания.

1. простые (односторонние) – содержат один основной элемент питания

Пример: хлорид аммония, фосфоритная мука и т.д.

2. комплексные (многосторонние) – содержат 2 или 3 основных элемента питания

Пример: калийная селитра, нитроаммофоска.

Классификация минеральных удобрений по входящим в их состав элементам питания.

1. макроудобрения – содержат макроэлементы (хлорид аммония)

2. микроудобрения – содержат микроэлементы (борная кислота)

Понятие «вид минеральных удобрений».

По преобладающему элементу питания простые минеральные удобрения подразделяются на виды: азотные, фосфорные, калийные

Понятие «форма минеральных удобрений».

Виды подразделяются на формы. Пример: вид азотные включает формы: натриевая селитра, сульфат аммония и т.д.)

Влажность минеральных удобрений.

Влажность – содержание влаги в % от общей массы удобрения. При повышенной влажности ухудшаются все основные физико-механические свойства, затрудняется применение удобрений. Для каждого удобрения ГОСТом определяется необходимый уровень влажности. Пример: влажность мочевины – не более 0,3%, порошковидного суперфосфата – не более 12%.

Предельная влагоёмкость минеральных удобрений.

Предельная влагоемкость – максимальная влажность при которой удобрения удовлетворительно рассеваются туковыми сеялками.

Гранулометрический состав минеральных удобрений.

Гранулометрический состав – процентное содержание отдельных фракций, во многом определяет слеживаемость и рассеиваемость удобрений.

Прочность гранул минеральных удобрений.

Прочность гранул – определяет сохранность гранулометрического состава удобрений при транспортировке, хранении и внесении.

Гигроскопичность минеральных удобрений.

Гигроскопичность – способность удобрений поглощать влагу из воздуха. Гигроскопичны только воднорастворимые удобрения. При повышенной гигроскопичности повышается влажность, ухудшается рассеиваемость, разрушаются гранулы, удобрения слеживаются. Гигроскопичность оценивается по 10ти бальной шкале. Самые гигроскопичные: кальциевая селитра и кристаллическая аммонийная селитра (более 9 баллов). Хранить и перевозить их следует только во влагонепроницаемых мешках.

Слёживаемость минеральных удобрений.

Слеживаемость – свойство дисперсных частиц удобрений к образованию агрегатов (?) различной величины и плотности. Как правило удобрения слеживаются при повышенной влажности, поэтому склонностью к слеживанию отличаются гигроскопичные удобрения. Кроме того слеживаемость увеличивается с уменьшением размера частиц и прочности гранул. Слежавшиеся удобрения перед внесением необходимо измельчить (АИР-20), что сопряжено с большими финансовыми затратами. Слеживаемость оценивается по 7ми бальной шкале. Сильно слеживается порошковидный суперфосфат (7), мелкокристаллический хлорид калия (6).

Рассеваемость (сыпучесть) минеральных удобрений.

Рассеиваемость (сыпучесть) – это подвижность частиц удобрения при внесении их туковыми сеялками. Оценивается по 12ти бальной шкале, чем лучше рассеиваемость, тем выше балл. Определяет способность удобрений к равномерному распределению по поверхности почвы. Наиболее равномерно высеваются удобрения выравненные по ГС.

Плотность минеральных удобрений.

Плотность удобрений – это масса единицы объема (т/м3). Учитывается при определении потребности в складских помещениях.

Угол естественного откоса минеральных удобрений.

Угол естественного откоса – угол между горизонтальной поверхностью и уровнем плоскости насыпи. Необходимо его учитывать для организации хранения удобрений.

Сертификация минеральных удобрений.

Рассмотренные показатели качества служат основой для сертификации удобрений, которая выполняется Агрохимической службой в соответствии с направлением ее деятельности. Осуществляет контроль за качеством и безопасностью удобрений и агрохимикатов поставляемых сельскому хозяйству. Проведение анализов выполняется в соответствие с показателями безопасности удобрений (тяж Ме, радионуклиды и т.д.) Требования устанавливаются ГОСТом и ТУ.

2.Реакция почвы и ее роль в питании растений и применении удобрений. Методы определения нуждаемости почв в известковании и расчета доз извести. Известковые удобрения. Классификация, состав, получение, свойства, взаимодействие с почвой, применение.

Реакция почвы – это обусловленная состоянием поглощенных катионов способность почвы подкислять или подщелачивать взаимодействующие с ней растворы солей или воду. Кислотность почв подразделяется на актуальную и потенциальную. Актуальная (активная) кислотность обуславливает повышение концентрации катионов Н в почвенном растворе и определяется водной вытяжкой из почвы (рНн2о). Потенциальная (пассивная) кислотность обусловлена наличием катионов H, Al, Fe в ППК, т.е. в твердой фазе почвы.

Обменная кислотность почв. Принцип потенциометрического метода определения обменной кислотности (рНКСL) почв.

В зависимости от способа определения потенциальной кислотности различают обменную и гидролитическую формы потенциальной кислотности. Обменная кислотность создается Н, Al, Fe (более подвижными) способными вытесняться в раствор при действии на почву гидролитически нейтральных солей (в т.ч. удобрений NaNO3, K2SO4 и др.)

Общепринятый метод – обработка почвы 1н. раствором, KCl (рН=5,5-5,8).

Реакции:

Al 3К

ППК)Н + nKCl = ППК)К + (n – 7)KCl + HCl + AlCl3 + FeCl3

Fe 3К

AlCl3 + 3Н2О = Al(OH)3 + 3HCl

FeCl3 + 3Н2О = Fe(OH)3 + 3HCl

Чаще всего обменная кислотность выражается как рНkcl, или м-экв/100 г почвы. При определении обменной кислотности учитываются катионы Н находящиеся в почвенном растворе, т.е. в величину обменной кислотности входит и актуальная кислотность. Между ППК и почвенным раствором существует динамическое равновесие, поэтому при внесении в почву удобрений. Обменная кислотность может переходить в актуальную, ухудшая условия развития растений. Обменная кислотность характерна для подзолистых, дерново-подзолистых, красноземов, а также почв северной части черноземной зоны (серые лесные, выщелоченные черноземы). По величине рНkcl определяется степень кислотности почв и нуждаемость их в известковании, очередность известкования и дозы извести.

Группировка почв по степени кислотности солевой вытяжки

№ группы

Рекомендуемый цвет окраски

Почвы по степени кислотности

рНKCl

1

Красный

Очень сильнокислые

< 4,0

2

Розовый

Сильнокислые

4,1-4,5

3

Оранжевый

Среднекислые

4,6-5,0

4

Желтый

Слабокислые

5,1-5,5

5

Светло-зеленый

Близкие к нейтральным

5,6-6,0

6

Зеленый

Нейтральные

> 6,0

Гидролитическая кислотность почв.

Гидролитическая кислотность обусловлена Н, Al, Fe (более прочно связанными с ППК) не вытесняющимися раствором нейтральной соли. Определяется обработкой почвы раствором гидролитически щелочной соли: 1н. CH3COONa.

Реакции:

Al 3Na

ППК)Н + nCH3COONa = ППК)Na + (n – 7)CH3COONa + 7CH3COOH + Al(ОН)3 + Fe(ОН)3

Fe 3Na

Гидролитическая кислотность выражается в м-экв/100 г почвы. Включает в себя: актуальную, обменную, и собственно гидролитическую. Собственно гидролитическая характеризуется слабой подвижностью и в отсутствии актуальной и обменной форм (например в черноземах) не оказывает вредного влияния на растения.

Щёлочность почв.

В щелочных почвах (ю. черноземах, каштановых, солонцах)

Выделяют:

1) Актуальная

2) Потенциальная

Актуальная обусловлена наличием в растворе гидролитически щелочных солей. Определяется при обработке почвы водой и выражается в рНн2о или м-экв/100 г почвы. Потенциальная связана с нахождением ионов Na в ППК. По величине щелочности определяют нуждаемость почв в гипсовании, а по доле Na в ППК рассчитывают дозы гипса. Реакция почвы оказывает большое влияние на агрохимические, агрофизические свойства почв, превращение питательных веществ, жизнь м.о. Приемы химической мелиорации направлены на создание слабокислой или нейтральной реакции среды, благоприятной для большинства растений.

1. Определение обменной кислотности (рНkcl) потенциометрически

Значение анализа: обменная кислотность - наиболее вредная для растений форма почвенной кислотности, обусловленная более подвижными ионами, водорода и алюминия почвенного поглощающего комплекса (ППК), способными вытесняться в раствор при действии на почву гидролитически нейтральной соли. По величине обменной кислотности, используя группировку, представленную ниже, можно определить степень кислотности почвы и нуждаемость её в известковании. Показатель pHkcl используется при определении доз извести.

Принцип метода: катионы водорода и алюминия вытесняются из почвенного поглощающего комплекса с помощью гидролитически нейтральной соли 1 н. раствора хлорида калия (КCl), рН которого составляет 5,5-5,8 при соотношении почвы к раствору 1: 2,5. При этом происходят следующие реакции:

Значение рН полученной вытяжки определяется потенциометрически с помощью селективного по отношению к катионам водорода стеклянного электрода.

2. Определение гидролитической кислотности (Нг) по Каппену

Значение анализа: гидролитическая кислотность - максимальная форма почвенной кислотности, характеризующая весь поглощённый водород. Гидролитическая кислотность обусловлена ионами водорода, более прочно связанными с коллоидами почвы и не вытесняющимися из почвенного поглощающего комплекса (ППК) раствором нейтральной соли. Она определяется при обработке почвы раствором гидролитически щелочной соли. При сопоставлении значений гидролитической кислотности и суммы поглощённых оснований можно сделать предположение о степени кислотности почв. Гидролитическая кислотность используется при расчёте ёмкости катионного обмена, степени насыщенности почв основаниями, определении доз извести и возможности применения фосфоритной муки в чистом виде.

Принцип метода: катионы водорода вытесняются из почвенного поглощающего комплекса с помощью гидролитически щелочной соли - 1 н. раствора ацетата натрия (СН3СООН), рН которого составляет 8,0-8,2 - при соотношении почвы к раствору 1: 2,5. При этом происходит следующая реакция:

По количеству 0,1 н. раствора гидроксида натрия (NaOH), пошедшего на титрование образовавшейся уксусной кислоты (СНзСООН), рассчитывается гидролитическая кислотность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]