
- •Министерство образования и науки Российской федерации
- •Часть I. Механика. Молекулярная физика и термодинамика.
- •Часть II. Электричество и магнетизм. Волновая и квантовая оптика.
- •Часть I завершается списком вопросов для зачета, а часть II – списком вопросов для экзамена (для двухсеместрового курса).
- •Механика
- •Тема 1. Кинематика поступательного и вращательного движения. Кинематика поступательного движения
- •Кинематика вращательного движения
- •Тема 2. Динамика поступательного движения. Законы Ньютона
- •Тема 3. Работа. Кинетическая, потенциальная и полная энергия
- •Тема 4. Момент инерции твердого тела. Теорема Штейнера
- •Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела
- •Тема 6. Момент импульса. Закон сохранения момента импульса
- •Тема 7. Механические колебания. Пружинный маятник
- •Тема 8. Гармонические колебания физического маятника
- •Тема 9. Механические волны
- •Молекулярная физика и термодинамика
- •Тема 11. Уравнение состояния идеального газа.
- •Тема 12. Термодинамические процессы. Изопроцессы.
- •Тема 13. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Тема 14. Распределение молекул идеального газа по скоростям.
- •Тема 15. Явления переноса (диффузия, теплопроводность, вязкость).
- •Тема 16. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
- •Тема 17. Теплоемкость газа при изопроцессах. Уравнение Майера.
- •Тема 18. Адиабатический процесс.
- •Вопросы к зачету
Министерство образования и науки Российской федерации
гОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«Ростовский государственный строительный университет»
Утверждено
на заседании кафедры физики
20 мая 2011 г.
ФИЗИКА НА ЗАОЧНОМ ФАКУЛЬТЕТЕ
КРАТКИЙ КУРС ЛЕКЦИЙ
ЧАСТЬ I. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
Учебно-методическое пособие для бакалавриата
всех профилей по направлению подготовки
270800 «Строительство»
Ростов-на-Дону
2011
УДК 531.383
Учебно-методическое пособие для бакалавриата всех профилей по направлению подготовки 270800 «Строительство».
Физика на заочном факультете. Краткий курс лекций. Часть I. Механика. Молекулярная физика и термодинамика. – Ростов н/Д: Рост. гос. строит. ун-т, 2011. – 30 с.
Содержится краткий курс лекций по физике, основанный на учебном пособии Т.И. Трофимовой «Курс физики» (изд-во Высшая школа), соответствующем действующей программе курса физики для бакалавриата всех профилей по направлению подготовки 270800 «Строительство».
Краткий курс лекций по физике состоит из двух частей:
Часть I. Механика. Молекулярная физика и термодинамика.
Часть II. Электричество и магнетизм. Волновая и квантовая оптика.
Часть I завершается списком вопросов для зачета, а часть II – списком вопросов для экзамена (для двухсеместрового курса).
Предназначено для использования преподавателями и студентами в качестве теоретического сопровождения лекций, практических занятий и лабораторного практикума с целью достижения более глубокого усвоения основных понятий и законов физики.
Рекомендуется для студентов бакалавриата заочного факультета РГСУ по всем профилям направления подготовки 270800 «Строительство».
УДК 531.383
Составители: проф. Н.Н.Харабаев
проф. А.Н. Павлов
доц. Н.В. Кривошеев
доц. Е.В.Чебанова
Корректор Н.Е. Гладких
Темплан 2011 г., поз. ___
Подписано
в печать _____
Формат 60х84 1/16. Бумага писчая. Ризограф. Уч.-изд.л. 1,2.
Тираж ___ экз. Заказ
___________________________________________________________
Редакционно-издательский центр
Ростовского государственного строительного университета
334022, Ростов-на-Дону, ул. Социалистическая, 162.
© Ростовский государственный
строительный университет, 2011
Механика
Тема 1. Кинематика поступательного и вращательного движения. Кинематика поступательного движения
Положение
материальной точки А
в декартовой системе координат в данный
момент времени определяется тремя
координатами x,
y
и
z
или радиусом-вектором
– вектором, проведенным из начала
системы координат в данную точку (рис.
1).
Движение материальной точки определяется в скалярном виде кинематическими уравнениями: x = x(t), у = y(t), z = z(t),
или в векторном
виде уравнением:
.
Траектория движения материальной точки – линия, описываемая этой точкой при её движении в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.
Пусть
материальная точка движется по
произвольной траектории (рис. 2). За
малый промежуток времени t
материальная точка переместиться из
положения А
в положение В,
пройдя при
этом путь s,
равный длине участка траектории АВ.
Рис. 1 Рис. 2
Вектор
,
проведенный из начального положения
движущейся точки в момент времениt
в конечное положение точки в момент
времени
(t+t),
называется перемещением,
то есть
.
Вектором
средней скорости
называется отношение перемещения
к промежутку времениt
, за который
это перемещение произошло:
.
Направление
вектора средней скорости
совпадает с направлением вектора
перемещения
.
Мгновенной
скоростью
(скоростью движения в момент времениt)
называется предел отношения перемещения
к промежутку времениt,
за который это перемещение произошло,
при стремлении t
к нулю:
,
где
– первая производная от функции
по времени
t,
которую принято
обозначать также в виде
.
Вектор
мгновенной скорости
направлен по касательной, проведенной
в данной точке к траектории в сторону
движения. При стремлении промежутка
времениt
к нулю модуль вектора перемещения
стремится к величине путиs,
поэтому модуль вектора
может быть определен через путьs:
.
Если скорость движения точки со временем изменяется, то быстрота изменения скорости движения точки характеризуется ускорением.
Средним
ускорением
в интервале времени отt
до (t
+ t)
называется векторная величина, равная
отношению изменения скорости
(
)
к промежутку времениt,
за который это изменение произошло:
.
Мгновенным
ускорением
илиускорением
движения точки в момент времени t
называется
предел отношения изменения скорости
к промежутку времениt,
за который это изменение произошло, при
стремлении t
к нулю:
,
где
– первая производная от функции
по времени
t,
–вторая
производная от функции
по времени
t.
Эти
производные принято обозначать
соответственно в виде:
и
.
Вектор
ускорения
может быть разложен на две составляющие:
тангенциальную
и нормальную
,
то есть:
.
Тангенциальная
составляющая
определяет быстроту изменения модуля
скорости
:
.
Вектор
направлен по касательной к траектории
движения и для ускоренного движения
совпадает с направлением вектора
скорости
,
а для замедленного движения –
противоположен вектору скорости
.
Нормальная
составляющая
определяет быстроту изменения направления
скорости
:
,
где r – радиус кривизны траектории движения.
Вектор
направлен по нормали к траектории
движения к центру ее кривизны (поэтому
нормальную составляющую ускорения
называют также центростремительным
ускорением).