
- •Оглавление
- •§1.2. Время как фактор в финансовых расчетах
- •§1.3. Проценты, виды процентных ставок
- •Глава 2
- •1. Точные проценты с точным числом дней ссуды (365/365):
- •2. Обыкновенные проценты с точным числом дней ссуды (360/365):
- •3. Обыкновенные проценты с приближенным числом дней ссу ды (360/360):
- •§ 2.2. Погашение задолженности частями
- •§2.3. Наращение процентов в потребительском кредите
- •§2.4. Дисконтирование по простым процентным ставкам. Наращение по учетной ставке
- •§2.5. Прямые и обратные задачи при начислении процентов и дисконтировании по простым ставкам
- •Дисконтные множители, I - d » 20%
- •§2.6. Определение срока ссуды и величины процентной ставки
- •§ 2.7. Конверсия валюты и наращение процентов
- •Глава 3 сложные проценты
- •§3.1. Начисление сложных годовых процентов
- •1 См.: Томас д. Воротилы финансового мира. М.: Прогресс, 1976.
- •§3.2. Сравнение роста по сложным и простым процентам
- •§3.3. Наращение процентов т раз в году. Номинальная и эффективная ставки
- •§3.4. Дисконтирование по сложной ставке
- •§3.5. Операции со сложной учетной ставкой
- •§3.6. Сравнение интенсивности процессов наращения
- •§3.7. Определение срока ссуды и размера процентной ставки
- •§3.8. Непрерывное наращение и дисконтирование. Непрерывные проценты
- •1 См. Математическое приложение к главе. 64
- •Глава 4
- •(IWf-lw/.NiwJt'...
- •§4.2. Эквивалентность процентных ставок
- •360 Х 0,4 лолло|г ллЛо«,п,
- •§4.3. Финансовая эквивалентность обязательств и конверсия платежей
- •§4.4. Общая постановка задачи изменения условий контракта
- •§4.5. Налоги и инфляция
- •1 Доказательство (4.38) см. В Математическом приложении к главе. 82
- •1 См. Математическое приложение к главе.
- •§4.6. Кривые доходности
- •1 В гл. 7 приводится пример выбора поведения инвестора в зависимости от ожиданий размера процентной ставки.
- •1. Приведем доказательство формулы (4.38). По определению
- •2. Докажем формулу (4.41):
- •Глава 5
- •§5.1. Виды потоков платежей и их основные параметры
- •1 В переводной литературе обычно не различают термины: поток платежей и член потока.
- •1 Июля 1 января 2000 г. 2001 г.
- •1 Января 1 января 2003 г. 2004 г.
- •§5.2. Наращенная сумма постоянной ренты постнумерандо
- •§5.3. Современная стоимость постоянной ренты постнумерандо
- •§5.4. Определение параметров постоянных рент постнумерандо
- •§5.5. Наращенные суммы и современные стоимости других видов постоянных рент
- •1 |П 1,2 ' oiUMct.
- •Глава 6
- •1 Доказательство приведено в Математическом приложении к главе. 126
- •§6.2. Ренты с постоянным относительным приростом платежей
- •§6.3. Постоянная непрерывная рента
- •§6.4. Непрерывные переменные потоки платежей
- •1 Доказательство см. В Математическом приложении к главе.
- •§6.5. Конверсии рент
- •§6.6. Изменение параметров рент
- •Глава 7
- •§7.2. Нелинейные модели
- •§7.3. Барьерные показатели в финансовом анализе
- •§7.4. Влияние неопределенности в исходных данных на положение барьерной точки
- •§7.5. Барьерные точки выпуска — финансовый подход к их определению
- •Глава 8 риск и диверсификация
- •§8.1 Риск
- •§8.2. Диверсификация инвестиций и дисперсия дохода
- •1 Напомним следующие свойства коэффициента корреляции:
- •1 В странах со стабильной экономикой безрисковой обычно считается ценная бумага, выпущенная государственным казначейством.
- •§8.3. Минимизация дисперсии дохода
- •Глава 9
- •§9.1. Расходы по обслуживанию долга
- •§9.2. Создание погасительного фонда
- •22%. Необходимо найти размеры срочных уплат. Пусть фонд формируется 5 лет, взносы производятся в конце каждого года равными суммами.
- •§9.3. Погашение долга в рассрочку
- •§9.4. Льготные займы и кредиты
- •§9.5. Реструктурирование займа
- •§9.6. Ипотечные ссуды
- •§9.7. Расчеты по ипотечным ссудам
- •Глава 10 измерение доходности
- •§10.1. Полная доходность
- •§10.2. Уравнение эквивалентности
- •§10.3. Доходность ссудных и учетных операций с удержанием комиссионных
- •§10.4. Доходность купли-продажи финансовых инструментов
- •§10.5. Долгосрочные ссуды
- •§10.6. Упрощенные методы измерения доходности (долгосрочные ссуды)
- •Дополнительная литература
- •Глава 11 облигации
- •§11.1. Виды облигаций и их рейтинг
- •§11.2. Измерение доходности облигаций
- •§11.3. Дополнительные сведения по измерению доходности облигаций
- •§11.4. Характеристики сроков поступлений средств и измерение риска
- •§11.5. Оценивание займов и облигаций
- •Глава 12
- •§12.2. Чистый приведенный доход
- •§12.3. Свойства чистого приведенного дохода
- •§12.4. Внутренняя норма доходности
- •1 В сопровождающем программу тексте этот показатель ошибочно назван "скоростью оборота".
- •2 Для определения внутренней нормы доходности применяется итерацион ный процесс, поэтому желательно указать некоторое ориентировочное началь ное значение ставки.
- •§12.5. Срок окупаемости
- •§12.6. Индекс доходности
- •§12.7. Соотношения относительных измерителей эффективности
- •§12.8. Сравнение результатов оценки эффективности
- •§12.9. Моделирование инвестиционного процесса
- •§12.10. Анализ отзывчивости
- •Математическое приложение к главе
- •Глава 13 лизинг
- •§13Л. Финансовый и оперативный лизинг
- •§13.2. Схемы погашения задолженности по лизинговому контракту
- •Периодические платежи по лизингу
- •§13.3. Методы расчета лизинговых платежей
- •1. Платежи постнумерандо
- •2. Платежи пренумерандо
- •Глава 14 форфейтная операция
- •§14.1. Сущность операции а форфэ
- •§14.2. Анализ позиции продавца
- •§14.3. Анализ позиций покупателя и банка
- •Глава 15 коротко об опционах
- •§15.1. Сущность опциона, основные понятия
- •§15.2. Цена опциона
- •§15.3. Модель Блека—Шоулза
- •Глава 16 страховые аннуитеты
- •§16.1. Финансовая эквивалентность в страховании
- •§16.2. Таблицы смертности и страховые вероятности
- •1 Во всех примерах данного параграфа используется таблица смертности населения ссср 1984—1985 гг.
- •§16.3. Коммутационные функции
- •Фрагмент таблицы коммутационных чисел1
- •§16.4. Стоимость страхового аннуитета
- •20|Лзо:51 Озо уЗю.З V.Oowo.
- •Глава 17 личное страхование
- •§17.1. Нетто-премии в личном страховании
- •1 Значения коммутационных чисел, приведенные в примерах, взяты из табл. 12 Приложения.
- •§17.2. Страхование жизни
- •§17.3. Пенсионное страхование. Виды пенсионных схем
- •§17.4. Расчет премий и пенсий. Сберегательные схемы
- •40 60 75 " Возраст
- •§17.5. Страховые пенсионные схемы
- •Расчет размера пенсии
- •§17.6. Страховые резервы в личном страховании
- •82 461 1 Ю iPso '
- •Коммерческий отдел — тел. 433-2510, 433-2502
- •Internet: http://www.Deio.Ane.Ru
- •Isbn 5-77494)193-9
§2.3. Наращение процентов в потребительском кредите
В потребительском кредите проценты, как правило, начисляются на всю сумму кредита и присоединяются к основному долгу уже в момент открытия кредита (flat rate of interest, add-on interest). Условие, прямо скажем, весьма жесткое для должника.
Погашение долга с процентами производится частями, обычно равными суммами на протяжении всего срока кредита. Из сказанного следует, что наращенная сумма долга равна
5= Р(\ + ш), а величина разового погасительного платежа составит
/? = "£-, (2.10)
пт
где п — срок кредита в годах, т — число платежей в году.
В связи с тем что проценты здесь начисляются на первоначальную сумму долга, а его фактическая величина систематически уменьшается во времени, действительная стоимость кредита заметно превышает договорную процентную ставку. Подробнее об этом см. гл. 9, в которой, кроме того, обсуждается проблема разбиения платежей на проценты и суммы погашения основного долга. Необходимость в таком разбиении возникает при досрочном погашении задолженности.
ПРИМЕР 2.8. Кредит для покупки товара на сумму 1млн руб. открыт на три года, процентная ставка — 15% годовых, выплаты в конце каждого месяца. Сумма долга с процентами
S = 1(1 + 3 х 0,15) = 1,45 млн руб.
Ежемесячные платежи:
1450 Я
= 3'^2
= 40,278 тыс. руб.
30
§2.4. Дисконтирование по простым процентным ставкам. Наращение по учетной ставке
В финансовой практике часто сталкиваются с задачей, обратной наращению процентов: по заданной сумме S, которую следует уплатить через некоторое время п, необходимо определить сумму полученной ссуды Р. Такая ситуация может возникнуть, например, при разработке условий контракта. Расчет Р по S необходим и тогда, когда проценты с суммы S удерживаются вперед, т.е. непосредственно при выдаче кредита, ссуды. В этих случаях говорят, что сумма S дисконтируется или учитывается, сам процесс начисления процентов и их удержание называют учетом, а удержанные проценты — дисконтом (discount) или скидкой. Необходимость дисконтирования возникает, например, при покупке краткосрочных обязательств, оплата которых должником произойдет в будущем.
Термин "дисконтирование" употребляется и в более широком смысле — как средство определения любой стоимостной величины, относящейся к будущему, на более ранний момент времени. Такой прием часто называют приведением стоимостного показателя к некоторому, обычно начальному, моменту времени. (Приведение может быть осуществлено на любой, в том числе промежуточный, момент времени.)
Величину Р, найденную с помощью дисконтирования, называют современной стоимостью, или современной величиной (present value), будущего платежа S, а иногда — текущей, или капитализированной, стоимостью. Современная величина суммы денег является одним из важнейших понятий в количественном анализе финансовых операций. В большинстве случаев именно с помощью дисконтирования, а не наращения, удобно учитывать такой фактор, как время. Как будет показано далее, большинство аналитических методов основывается на определении современной величины платежей.
В зависимости от вида процентной ставки применяют два метода дисконтирования — математическое дисконтирование и банковский (коммерческий) учет. В первом случае применяется ставка наращения, во втором — учетная ставка.
Математическое дисконтирование. Математическое дисконтирование представляет собой решение задачи, обратной наращению первоначальной суммы ссуды. Задача в этом случае
31
формулируется
так: какую первоначальную сумму ссуды
надо выдать
в долг, чтобы получить в конце срока
сумму S,
при
условии,
что на долг начисляются проценты по
ставке /? Решив (2.1)
относительно Р,
находим
'-ТТы- (2">
Напомним, что п = t/K — срок ссуды в годах.
Установленная таким путем величина Р является современной величиной суммы S, которая будет выплачена спустя п лет. Дробь 1/(1 + ni) называют дисконтным, или дисконтирующим, множителем. Этот множитель показывает, какую долю составляет первоначальная величина долга в окончательной его сумме.
ПРИМЕР 2.9. Через 180 дней после подписания договора должник уплатит 310 тыс. руб. Кредит выдан под 16% годовых. Какова первоначальная сумма долга при условии, что временная база равна 365 дням? Согласно (2.11) находим
р = 310000 =
287328,59 руб.
Разность S — Р можно рассматривать не только как проценты, начисленные на Р, но и как дисконт с суммы S.
Банковский учет (учет векселей). Суть операции заключается в следующем. Банк или другое финансовое учреждение до наступления срока платежа (date of maturity) по векселю или иному платежному обязательству приобретает его у владельца по цене, которая меньше суммы, указанной на векселе, т.е. покупает (учитывает) его с дисконтом. Получив при наступлении срока векселя деньги, банк реализует процентный доход в виде дисконта. В свою очередь владелец векселя с помощью его учета имеет возможность получить деньги хотя и не в полном объеме, однако ранее указанного на нем срока.
При учете векселя применяется банковский, или коммерческий, учет. Согласно этому методу проценты за пользование ссудой в виде дисконта начисляются на сумму, подлежащую уплате в конце срока (maturity value). При этом применяется учетная ставка d.
32
Размер
дисконта, или суммы учета, очевидно
равен Snd;
если
d
—
годовая учетная ставка, то п
измеряется
в годах. Таким образом,
Р= S- Snd= S(l - nd), (2,12)
где п — срок от момента учета до даты погашения векселя.
Дисконтный множитель здесь равен (1 — nd). Из формулы (2.12) вытекает, что при п > \/d величина дисконтного множителя и, следовательно, суммы Р станет отрицательной. Иначе говоря, при относительно большом сроке векселя учет может привести к нулевой или даже отрицательной сумме Р, что лишено смысла. Например, при d = 20% уже пятилетний срок достаточен для того, чтобы владелец векселя ничего не получил при его учете.
Учет посредством учетной ставки чаще всего осуществляется при временной базе К = 360 дней, число дней ссуды обычно берется точным, АСТ/360.
ПРИМЕР 2.10. Тратта (переводной вексель) выдан на сумму 1 млн руб. с уплатой 17.11.2000. Владелец векселя учел его в банке 23.09.2000 по учетной ставке 20% (АСТ/360). Оставшийся до конца срока период равен 55 дням. Полученная при учете сумма (без уплаты комиссионных) равна
Р = 1000000(1 - -^Цг 0,2) = 969444,4 руб.
Дисконт составит 30555,6 руб.
Дополним условия примера. Пусть на всю сумму долга теперь начисляются проценты по ставке простых процентов / = 20,5% годовых. В этом случае, очевидно, надо решить две задачи: определить наращенную сумму долга и сумму, получаемую при учете. Оба последовательных действия можно представить в одной формуле
Р" = Р(1 + л/)(1 -n'd),
где п — общий срок обязательства, п' — срок от момента учета до погашения.
Пусть в данном примере п = 120/360, тогда
Р" = 1 000 000(1 + -^=£- 0,205)(1 - -^г 0,2) = 1 035 690 руб. Зои Зои
33
Разумеется, дисконт, как скидка с конечной суммы долга, необязательно определяется через ту или иную процентную ставку, он может быть установлен по соглашению сторон и в виде фиксированной величины для всего срока. Однако, размер ставки неявно всегда имеется ввиду.
Наращение по учетной ставке. Простая учетная ставка иногда применяется и при расчете наращенной суммы. В частности, в этом возникает необходимость при определении суммы, которую надо проставить в векселе, если задана текущая сумма долга. Наращенная сумма в этом случае
Множитель наращения здесь равен 1/(1 — nd). Наращение не пропорционально ни сроку, ни ставке. Заметим, что при п> \/d расчет лишен смысла, так как наращенная сумма становится бесконечно большим числом. Такая ситуация не возникает при математическом дисконтировании: при любом сроке современная величина платежа больше нуля.
ПРИМЕР 2.11. По данным примера 2.2 определим наращенную сумму при условии, что проценты начисляются по простой учетной ставке d = 18%:
S = 1 000 000 — = 1148105,62 руб.
1 -Ц|0,18 360