
- •Оглавление
- •§1.2. Время как фактор в финансовых расчетах
- •§1.3. Проценты, виды процентных ставок
- •Глава 2
- •1. Точные проценты с точным числом дней ссуды (365/365):
- •2. Обыкновенные проценты с точным числом дней ссуды (360/365):
- •3. Обыкновенные проценты с приближенным числом дней ссу ды (360/360):
- •§ 2.2. Погашение задолженности частями
- •§2.3. Наращение процентов в потребительском кредите
- •§2.4. Дисконтирование по простым процентным ставкам. Наращение по учетной ставке
- •§2.5. Прямые и обратные задачи при начислении процентов и дисконтировании по простым ставкам
- •Дисконтные множители, I - d » 20%
- •§2.6. Определение срока ссуды и величины процентной ставки
- •§ 2.7. Конверсия валюты и наращение процентов
- •Глава 3 сложные проценты
- •§3.1. Начисление сложных годовых процентов
- •1 См.: Томас д. Воротилы финансового мира. М.: Прогресс, 1976.
- •§3.2. Сравнение роста по сложным и простым процентам
- •§3.3. Наращение процентов т раз в году. Номинальная и эффективная ставки
- •§3.4. Дисконтирование по сложной ставке
- •§3.5. Операции со сложной учетной ставкой
- •§3.6. Сравнение интенсивности процессов наращения
- •§3.7. Определение срока ссуды и размера процентной ставки
- •§3.8. Непрерывное наращение и дисконтирование. Непрерывные проценты
- •1 См. Математическое приложение к главе. 64
- •Глава 4
- •(IWf-lw/.NiwJt'...
- •§4.2. Эквивалентность процентных ставок
- •360 Х 0,4 лолло|г ллЛо«,п,
- •§4.3. Финансовая эквивалентность обязательств и конверсия платежей
- •§4.4. Общая постановка задачи изменения условий контракта
- •§4.5. Налоги и инфляция
- •1 Доказательство (4.38) см. В Математическом приложении к главе. 82
- •1 См. Математическое приложение к главе.
- •§4.6. Кривые доходности
- •1 В гл. 7 приводится пример выбора поведения инвестора в зависимости от ожиданий размера процентной ставки.
- •1. Приведем доказательство формулы (4.38). По определению
- •2. Докажем формулу (4.41):
- •Глава 5
- •§5.1. Виды потоков платежей и их основные параметры
- •1 В переводной литературе обычно не различают термины: поток платежей и член потока.
- •1 Июля 1 января 2000 г. 2001 г.
- •1 Января 1 января 2003 г. 2004 г.
- •§5.2. Наращенная сумма постоянной ренты постнумерандо
- •§5.3. Современная стоимость постоянной ренты постнумерандо
- •§5.4. Определение параметров постоянных рент постнумерандо
- •§5.5. Наращенные суммы и современные стоимости других видов постоянных рент
- •1 |П 1,2 ' oiUMct.
- •Глава 6
- •1 Доказательство приведено в Математическом приложении к главе. 126
- •§6.2. Ренты с постоянным относительным приростом платежей
- •§6.3. Постоянная непрерывная рента
- •§6.4. Непрерывные переменные потоки платежей
- •1 Доказательство см. В Математическом приложении к главе.
- •§6.5. Конверсии рент
- •§6.6. Изменение параметров рент
- •Глава 7
- •§7.2. Нелинейные модели
- •§7.3. Барьерные показатели в финансовом анализе
- •§7.4. Влияние неопределенности в исходных данных на положение барьерной точки
- •§7.5. Барьерные точки выпуска — финансовый подход к их определению
- •Глава 8 риск и диверсификация
- •§8.1 Риск
- •§8.2. Диверсификация инвестиций и дисперсия дохода
- •1 Напомним следующие свойства коэффициента корреляции:
- •1 В странах со стабильной экономикой безрисковой обычно считается ценная бумага, выпущенная государственным казначейством.
- •§8.3. Минимизация дисперсии дохода
- •Глава 9
- •§9.1. Расходы по обслуживанию долга
- •§9.2. Создание погасительного фонда
- •22%. Необходимо найти размеры срочных уплат. Пусть фонд формируется 5 лет, взносы производятся в конце каждого года равными суммами.
- •§9.3. Погашение долга в рассрочку
- •§9.4. Льготные займы и кредиты
- •§9.5. Реструктурирование займа
- •§9.6. Ипотечные ссуды
- •§9.7. Расчеты по ипотечным ссудам
- •Глава 10 измерение доходности
- •§10.1. Полная доходность
- •§10.2. Уравнение эквивалентности
- •§10.3. Доходность ссудных и учетных операций с удержанием комиссионных
- •§10.4. Доходность купли-продажи финансовых инструментов
- •§10.5. Долгосрочные ссуды
- •§10.6. Упрощенные методы измерения доходности (долгосрочные ссуды)
- •Дополнительная литература
- •Глава 11 облигации
- •§11.1. Виды облигаций и их рейтинг
- •§11.2. Измерение доходности облигаций
- •§11.3. Дополнительные сведения по измерению доходности облигаций
- •§11.4. Характеристики сроков поступлений средств и измерение риска
- •§11.5. Оценивание займов и облигаций
- •Глава 12
- •§12.2. Чистый приведенный доход
- •§12.3. Свойства чистого приведенного дохода
- •§12.4. Внутренняя норма доходности
- •1 В сопровождающем программу тексте этот показатель ошибочно назван "скоростью оборота".
- •2 Для определения внутренней нормы доходности применяется итерацион ный процесс, поэтому желательно указать некоторое ориентировочное началь ное значение ставки.
- •§12.5. Срок окупаемости
- •§12.6. Индекс доходности
- •§12.7. Соотношения относительных измерителей эффективности
- •§12.8. Сравнение результатов оценки эффективности
- •§12.9. Моделирование инвестиционного процесса
- •§12.10. Анализ отзывчивости
- •Математическое приложение к главе
- •Глава 13 лизинг
- •§13Л. Финансовый и оперативный лизинг
- •§13.2. Схемы погашения задолженности по лизинговому контракту
- •Периодические платежи по лизингу
- •§13.3. Методы расчета лизинговых платежей
- •1. Платежи постнумерандо
- •2. Платежи пренумерандо
- •Глава 14 форфейтная операция
- •§14.1. Сущность операции а форфэ
- •§14.2. Анализ позиции продавца
- •§14.3. Анализ позиций покупателя и банка
- •Глава 15 коротко об опционах
- •§15.1. Сущность опциона, основные понятия
- •§15.2. Цена опциона
- •§15.3. Модель Блека—Шоулза
- •Глава 16 страховые аннуитеты
- •§16.1. Финансовая эквивалентность в страховании
- •§16.2. Таблицы смертности и страховые вероятности
- •1 Во всех примерах данного параграфа используется таблица смертности населения ссср 1984—1985 гг.
- •§16.3. Коммутационные функции
- •Фрагмент таблицы коммутационных чисел1
- •§16.4. Стоимость страхового аннуитета
- •20|Лзо:51 Озо уЗю.З V.Oowo.
- •Глава 17 личное страхование
- •§17.1. Нетто-премии в личном страховании
- •1 Значения коммутационных чисел, приведенные в примерах, взяты из табл. 12 Приложения.
- •§17.2. Страхование жизни
- •§17.3. Пенсионное страхование. Виды пенсионных схем
- •§17.4. Расчет премий и пенсий. Сберегательные схемы
- •40 60 75 " Возраст
- •§17.5. Страховые пенсионные схемы
- •Расчет размера пенсии
- •§17.6. Страховые резервы в личном страховании
- •82 461 1 Ю iPso '
- •Коммерческий отдел — тел. 433-2510, 433-2502
- •Internet: http://www.Deio.Ane.Ru
- •Isbn 5-77494)193-9
§9.4. Льготные займы и кредиты
Грант-элемент. Предмет обсуждения в данном параграфе также связан с долгосрочными займами. Однако здесь они рассматриваются под другим углом зрения. Дело в том, что в ряде случаев долгосрочные займы и кредиты выдаются по тем или иным причинам (иногда политическим) под льготные для заемщика условия. Низкая (относительно ставки на рынке кредитов) процентная ставка в сочетании с большим его сроком и льготным периодом дают должнику существенную выгоду, которую можно рассматривать как субсидию. Кредитор в этих условиях несет некоторые потери, так как он мог бы инвестировать деньги на более выгодных условиях.
Проблема определения размера такого рода помощи обсуждалась в международных организациях и экономической литературе главным образом с позиции межстрановых сопоставлений — для сравнения размеров финансовой помощи, оказываемой ряду развивающихся стран. Однако проблема оценки последствий выдачи льготных займов имеет более общее значение, так как льготные займы предоставляют и внутри страны.
Грант-элемент (grant-element) — это условная потеря заимодавца, которая связана с применением более низкой процентной ставки, чем существующие ставки кредитного рынка. Грант-элемент определяется в двух видах: в виде абсолютной и относительной величин.
Абсолютный фант-элемент рассчитывается как разность номинальной суммы займа и современной величины платежей по погашению займов, рассчитанной по рыночной ставке. Проблема, как видим, сводится к выбору надлежащей ставки процента для расчета современной величины. Рекомендации по выбору конкретного значения этой ставки весьма расплывчаты. Обычно используют превалирующую на рынке долгосрочных кредитов ставку.
Размер абсолютного грант-элемента находим следующим образом:
W=D-G, (9.13)
где W'— абсолютный грант-элемент, D — сумма займа, G — современная величина платежей, поступающих в счет погашения займа, рассчитанная по реальной ставке кредитного рынка.
196
Относительный
грант-элемент характеризует отношение
абсолютного
грант-элемента к сумме займа:
W G
"-Т"1-^' (9Л4)
w — относительный грант-элемент.
Как видим, все переменные приведенных формул определяются условиями выдачи и погашения займа.
Выведем рабочие формулы для расчета W и w при условии, что долг и проценты выплачиваются в виде постоянных срочных уплат. Для анализа последствий выдачи льготных займов этого достаточно.
Пусть заем выдан на п лет и предусматривает выплату процентов по льготной ставке g. На денежном рынке аналогичные по сроку и величине займы выдаются по ставке /. В этом случае при отсутствии льготного периода срочная уплата составит:
Г=-Г", (9.15)
а современная величина всех выплат должника очевидно равна Кяг„.;. В итоге
n\i
а Л
(9.16)
W=D- Yani=D\\-
°n\g I
w-1-7*4 (9.17)
где а .,, аио — коэффициенты приведения постоянных годовых рент постнумерандо, определенные для процентных ставок / и
ПРИМЕР 9.10. Льготный заем выдан на 10 лет под 3,8%. Предусматривается погашение долга равными срочными уплатами. Известно, что обычная рыночная ставка для такого срока займа равна 8%. В этом случае
аю;8
. *-,<ллв0,038
*
10,3,8 ■
" 1,038
4 \ мо_ю
= 0,1809.
197
Допустим,
исходная сумма займа
равна 10 млн руб.
Тогда абсолютный
грант-элемент или
условная сумма потерь
для кредитора и,
соответственно, выгода
для должника, составят
W = 10 х 0,1809 = 1,809 млн руб.
Наличие льготного периода увеличивает фант-элемент. Если в льготном периоде должник выплачивает проценты, то современная величина поступлений по долгу определяется как сумма двух элементов — современных величин процентных платежей в льготном периоде и срочных уплат в оставшееся время. Таким образом,
G= DgxaLi+ Yxan_L;ixvL, (9.18)
где п - L — продолжительность периода погашения задолженности; L — продолжительность льготного периода.
После ряда преобразований (9.14) получим1
G W-1---1-
Ь-^ + *xfld" (9.19)
V Un-L;g )
Здесь ап-щ , ^„-t^ — коэффициенты приведения постоянных рент со сроком п — L и ставками / и g; vL — дисконтный множитель по ставке /.
Обсудим еще один возможный вариант. Пусть в льготном периоде проценты начисляются, но не выплачиваются. Они присоединяются к основному долгу, который погашается в течение п — L лет. Условия такого займа более льготны для должника, чем при последовательной выплате процентов.
Срочные уплаты и их современная величина в данном случае равны:
D^+Jt r-Y п На основе этих выражений получим
w = 1 - — = 1 - — х t .
D an-L* I 1 + I
См. Математическое приложение к главе.
198
ПРИМЕР
9.11. Пусть
заем
в
примере
9.10 предусматривает
трехлетний
льготный
период,
в
течение
которого
выплачиваются
проценты. Для
расчета
относительного
грант-элемента
находим:
а78= 5,20637, а738= 6,04667, а38= 2,5771,v3
= 1.08"3
= = 0,79383;
w= 1 -
(5,20637
^6,04667
0,79383 + 0,038 х 2,5771 = 0,2185
Если проценты в льготном периоде не выплачиваются, а присоединяются к основной сумме долга, то
а
5,20637
|Ч038^з
w
=
1 - |
л
_
| = 0,2356.
6,04667 1 1,08
Грант-элемент, как было продемонстрировано выше, — условная обобщающая характеристика льготности займа (потерь заимодавца и выигрыша должника). Сумма, которая равна грант-элементу, существенно зависит от принятой при ее определении процентной ставки. График зависимости относительных потерь от соотношения процентных ставок показан на рис. 9.1 для сроков займа 5 и 10 лет без льготного периода, £=5%.
л
= 10
2 3
Рис. 9.1
л = 5
i/9
Предельным случаем льготного займа является беспроцентный заем. Выдача такого займа связана с потерями, которые определим, полагая, что соответствующие средства можно было бы разместить под проценты по рыночной ставке /. Например, уже при пятнадцатилетнем сроке беспроцентного займа и рыночной ставке 10% кредитор теряет почти 50% от суммы долга.
199