
- •Материаловедение
- •(Электротехнические материалы)
- •Лабораторный практикум
- •Казань 2009
- •Поле материя
- •Геологическое
- •Инновационные аспекты современного материаловедения
- •Лабораторная работа № 1
- •Относительная диэлектрическая проницаемость
- •Виды поляризации
- •Токи в диэлектрике
- •Диэлектрические потери
- •Тангенс угла диэлектрических потерь
- •Зависимости e и tgδ от температуры и природы диэлектрика
- •1.2. Описание лабораторной установки
- •1.3. Требования по технике безопасности
- •1.4. Порядок и методика проведения лабораторной работы
- •1.4.1. Подготовка установки к работе
- •1.4.2. Последовательность проведения эксперимента
- •1.4.3. Обработка и анализ полученных результатов
- •1.4.4. Содержание отчета по работе
- •Контрольные вопросы
- •Литература
- •Виды пробоя твердых диэлектриков
- •Влияние различных факторов на электрическую прочность твердых диэлектриков
- •2.2. Описание лабораторной установки
- •2.3. Требования по технике безопасности
- •2.4. Порядок и методика проведения лабораторной работы
- •2.4.1. Подготовка установки к работе
- •2.4.2. Последовательность проведения эксперимента
- •2.4.3. Обработка и анализ полученных результатов
- •2.4.4. Содержание отчета по работе
- •Контрольные вопросы
- •Литература
- •3.2. Описание лабораторной установки
- •3.2.1. Назначение установки
- •3.2.2. Основные технические характеристики
- •3.2.3. Устройство и работа автоматизированного стенда
- •3.2.3.1. Описание структурной схемы и принципа действия установки
- •3.2.3.2. Устройство и работа измерительного блока
- •3.2.4. Описание программного интерфейса
- •3.2.4.1. Команды меню и панели инструментов
- •Кнопки панели управления и их соответствие командам меню:
- •3.2.4.2. Основное окно
- •3.2.4.3. Схемы измерений
- •3.2.4.4. Управляющие и регистрирующие инструменты
- •Образец
- •Нагреватель
- •Частотомер
- •Электронный осциллограф
- •Измеритель c, tg δ
- •Звуковой генератор
- •3.2.4.5. Рабочая тетрадь
- •Формулы
- •Графики
- •3.2.4.6. Обработка результатов
- •Построитель выражений
- •Построение и редактирование графиков
- •Формирование отчета
- •3.3. Требования по технике безопасности
- •3.4. Порядок и методика проведения лабораторной работы
- •3.4.1. Подготовка установки к работе
- •3.4.1.1. Подключение измерительного блока к пк
- •3.4.1.2. Установка и запуск программного приложения
- •3.4.1.3. Возможные неисправности и способы их устранения
- •3.4.2. Последовательность проведения эксперимента
- •3.4.2.1. Измерение временных зависимостей сигналов
- •3.4.2.2. Измерение петли гистерезиса
- •3.4.2.3. Измерение основной кривой поляризации
- •3.4.2.4. Измерение температурных зависимостей диэлектрической проницаемости и тангенса угла диэлектрических потерь
- •Последовательность проведения измерений
- •3.4.3. Обработка и анализ полученных результатов
- •3.4.3.1 Построение графических зависимостей
- •3.4.4. Содержание отчета по работе
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 4 Исследование свойств полупроводников методом эффекта Холла Цель работы
- •4.1. Основные теоретические положения
- •4.2. Описание лабораторной установки
- •Управляющие инструменты
- •Регистрирующие инструменты
- •4.3 Требования по технике безопасности
- •4.4.3. Обработка и анализ полученных результатов
- •4.4.4. Содержание отчета по работе Отчет по работе должен содержать следующую информацию:
- •Контрольные вопросы
- •Литература
- •Температурная зависимость удельного сопротивления металлических проводников
- •Влияние примесей и других структурных дефектов на удельное сопротивление металлов
- •Электрические свойства металлических сплавов
- •Влияние толщины металлических пленок на удельное поверхностное сопротивление и его температурный коэффициент
- •5.2. Описание лабораторной установки
- •5.3. Требования по технике безопасности
- •5.4. Порядок и методика проведения лабораторной работы
- •5.4.1. Подготовка установки к работе
- •5.4.2. Последовательность проведения эксперимента
- •5.4.3. Обработка и анализ полученных результатов
- •5.4.4. Содержание отчета по работе
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 6
- •Классификация магнитных материалов
- •Магнитомягкие и магнитотвердые магнитные материалы
- •Петля гистерезиса
- •Расчетные соотношения
- •6.2. Описание лабораторной установки
- •Интерфейс пользователя Рабочее место
- •Рабочая тетрадь
- •Управляющие инструменты
- •Регистрирующие инструменты
- •6.3. Требования по технике безопасности
- •6.4.3. Обработка и анализ полученных результатов
- •6.4.4. Содержание отчета по работе
- •Контрольные вопросы
- •Литература
- •Материаловедение (Электротехнические материалы)
Кнопки панели управления и их соответствие командам меню:
«Рабочая
тетрадь | Новая».
«Рабочая
тетрадь | Открыть».
«Рабочая
тетрадь | Открыть отчет».
«Рабочая
тетрадь | Закрыть отчет».
«Инструменты
| Упорядочить».
«Справка
| Содержание».
«Рабочая тетрадь | Выход».
3.2.4.2. Основное окно
Основное окно программы общения с пользователем показано на рис. 3.8. Программное обеспечение построено по принципу многооконного интерфейса. Центральное место занимает окно с упрощенными схемами измерений, которые реализованы в реальном измерительном блоке. Таких схем может быть три.
На каждой схеме присутствует свой набор управляющих и регистрирующих инструментов. Внешний вид приборных панелей, естественно, отличается от реально существующих приборов (рис. 3.9). Более того, на них есть специальные кнопки, которых в принципе не бывает на реальных устройствах: например, кнопка «Справка», позволяющая получить справочную информацию о данном приборе.
Непременным атрибутом при работе за классическим измерительным стендом является Рабочая тетрадь, в которую экспериментатор заносит показания приборов. В программе эта возможность также реализована. Рабочая тетрадь открывается в отдельном окне с помощью команд меню или кнопок панели управления.
Рис. 3.8. Основное окно приложения
Рис. 3.9. Регистрирующий и управляющий инструменты
3.2.4.3. Схемы измерений
Это окно предоставляет возможность выбора схемы измерений, которая реализована в реальном измерительном блоке. Выбор осуществляется при помощи ярлычков, расположенных в верхней части окна. Всего схем существует три.
Схема измерений № 1 (рис. 3.9) предназначена для проведения измерений формы сигналов, пропорциональных напряженности электрического поля и заряду на конденсаторе С0. Напряжение, пропорциональное напряженности, получается при помощи делителя R1-R2. Осциллограф здесь двухканальный, поэтому видно сразу два сигнала.
Схема измерений № 2 (рис. 3.10) предназначена для проведения измерений зависимости сигналов, пропорциональных напряженности электрического поля (Ux) и заряду на конденсаторе С0 (Uy), друг от друга. На горизонтальные отклоняющие пластины осциллографа подается напряжение Ux, а на вертикальные – Uy, т.е. отображается петля гистерезиса.
Рис. 3.9. Схема измерений № 1
Рис. 3.10. Схема измерений № 2
Поскольку конденсаторы соединены последовательно друг с другом, то заряд на их обкладках одинаковый, следовательно заряд сегнетоэлектрического конденсатора Cx будет
, (3.5)
а напряженность поля в сегнетоэлектрике –
, (3.6)
где h – толщина образца.
Схема измерений № 3. Эта схема (рис. 3.11) предназначена для проведения температурных измерений. Образец Cx помещен в нагреватель. В качестве основного измерительного прибора выступает измеритель емкости и тангенса угла диэлектрических потерь (tgΔ).
Рис. 3.11. Схема измерений № 3
Зная емкость, нетрудно рассчитать статическую диэлектрическую проницаемость:
, (3.7)
где S – площадь образца; ε0 – диэлектрическая постоянная.