Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТОДИЧКИ ПО МАТЕРИАЛОВЕДЕНИЮ / материаловедение практикум (ЭТМ) Новые установки.doc
Скачиваний:
353
Добавлен:
10.06.2015
Размер:
6.27 Mб
Скачать

3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ»

Материаловедение

(Электротехнические материалы)

Лабораторный практикум

Казань 2009

УДК 620.2.

ББК 30.3

С40

Рецензенты:

С40

Материаловедение (Электротехнические материалы)

Лабораторный практикум / Сост.: О.С. Сироткин, А.Е. Сухарников, П.Б. Шибаев, А.М. Трубачева, И.А. Женжурист, Д.Ю. Павлов, А.Е. Бунтин, А.В. Рязанова. – Казань: Казан. гос. энерг. ун-т, 2009. – с.

В лабораторном практикуме изложении 6 лабораторных работ по электротехническому материаловедению, посвященных исследованию свойств диэлектриков, сегнетоэлектриков, полупроводников, проводников и магнитомягких материалов.

Практикум предваряется инновационными аспектами материаловедения, раскрывающими влияние специфики природы и тонкой химической структуры различных материалов на их естественное разделение и на диэлектрики, полупроводники и проводники.

УДК 620.2.

ББК 30.3

 Казанский государственный энергетический университет, 2009

ВВЕДЕНИЕ

Электротехнические материалы (ЭТМ) используются в качестве изделий, эксплуатируемых в качестве элементов для создания конструкций в виде электронных схем, осуществляющих прохождение электрического тока, его изоляцию, генерацию, усиление, выпрямление и т.д. Этими элементами, в виде соответствующих изделий, являются электропровода, кабели, волноводы, изоляторы, резисторы, магниты, трансформаторы, генераторы, диоды, транзисторы, термисторы, лазеры, запоминающие устройства ЭВМ и т.д. Получение конкретного изделия с необходимыми эксплутационными характеристиками возможно только из ЭТМ с комплексом соответствующих физико-химических свойств. А эти свойства являются функцией строения конкретного материала (рис. 1). Причем именно тонкая химическая микроструктура материала и является исходной для последующих мезо- и макроуровней и определяющей формирование ряда базисных инноваций [1-5] современного материаловедения (рис. 1, 2, 3, 4, 5).

Порядок изучения работ по предлагаемому практикуму по дисциплине. «Материаловедение. ЭТМ» в принципе, можно начинать как с диэлектрических, так и с проводниковых материалов. При этом всегда важно учитывать специфику природы материала, определяющую распространенность, доступность, свойства и области его практического применения. В пользу первого варианта свидетельствует, факт практического отсутствия в природе проводников в виде чистых металлов (за исключением химически инертных – благородных, типа золота и т.д.), то есть фактически подавляющее число металлов и их сплавов являются искусственными материалами, в отличие от целого ряда диэлектриков. Это связано с тем, что они получаются путем превращения (восстановления) одних химических веществ в другие или их в ходе модификации (легирования) их структуры. Кроме того, микроструктура металлов, на тонком электронно-ядерном уровне, характеризуется высокой делокализацией обобществленных электронов (преобладанием степени металличности), то есть является немолекулярной. А, следовательно, строение металлов характеризуется гораздо меньшим структурным разнообразием, по сравнению с неметаллами, особенно на основе молекул и макромолекул (полимерные материалы и т.д.). [6, 7] Поэтому если придерживаться фундаментальных научных принципов, лежащих в основе химических систем, включая индивидуальные гомо- и гетеросоединения, вещества, материалы (рис. 3, 4, 5) и практических реалий, то вещества и материалы, обладающие

Базисные инновации современного материаловедения, как единой науки о металлических и неметаллических материалах:

1. Система базовых (основных и производных) понятий; 2.Унифицированная классификация основных уровней структуры; 3.Единая универсальная модель тонкой химической структуры; 4.Системахимических связей и соединений (СХСС),объединяющая «чистые» металлы и неметаллы и раскрывающая общий характер влияния исходной тонкой химической микроструктуры на последующие уровни их структурной организации и специфику их свойств, включая оценку индивидуального вклада различных уровней в характеристику конкретного свойства