Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекция 11. Учет энергетических ресурсов

.pdf
Скачиваний:
43
Добавлен:
10.06.2015
Размер:
268.5 Кб
Скачать

Лекция 11. Учет энергетических ресурсов

Втехнической термодинамике теплота является одним из важнейших понятий. Исторически понятие теплота (тепло) и связанные с ним другие термины (теплоемкость, теплосодержание и др.) возникли и сложились с ошибочным представлением о том, что каждому телу присуще наличие определенного количества невидимой и невесомой жидкости — теплорода. По своему смыслу понятие теплоты близко к понятию работы. Как теплота, так и работа являются формами передачи энергии и могут быть определены лишь в процессе передачи или преобразования энергии. Теплота связана с процессом передачи энергии посредством теплообмена (теплопроводности, конвекции, излучения). Как было показано опытным путем, механическая работа термодинамической системы связана с изменением объема системы.

Врезультате опытов с 1843 по 1850 гг. Джоулем было установлено соотношение между работой, затрачиваемой в процессе, связанным с выделением теплоты, и количеством выделившейся теплоты. В результате опытов была получена величина — J = 426,935 кгс.м/ккал — механический эквивалент теплоты. В соответствии с молеку-лярно-кинетической теорией вещества теплота является мерой изменения хаотического теплового движения микрочастиц вещества. Следует иметь в виду, что теплота и работа не являются свойствами системы, и можно говорить только об изменении теплоты, рассматривая термодинамический процесс системы. Поэтому нет никакого основания говорить о содержании теплоты в системе или о содержании работы в системе. Работа и теплота являются лишь количественными мерами передачи движения системе от источника работы и источника теплоты.

Тепловая энергия (теплота) может передаваться с помощью теплоносителя. Традиционными теплоносителями в системах отопления, горячего теплоснабжения и вентиляции являются вода, пар и воздух. Основные требования к коммерческому учету тепловой энергии, передаваемой с помощью воды и пара. В Правилах учета тепловой энергии и теплоносителя используется ряд терминов и определений:

1.Вид тепловой нагрузки — отопительная, вентиляционная, технологическая, кондиционирование воздуха, горячее водоснабжение.

2.Источник теплоты — энергоустановка, производящая тепловую энергию.

3.Потребитель тепловой энергии — юридическое или физическое лицо, которому принадлежат теплопотребляющие установки, присоединенные к системе теплоснабжения энергоснабжающей организации.

4.Открытая водяная система теплоснабжения — водяная система теплоснабжения, в которой вода частично или полностью отбирается из системы потребителями тепловой энергии.

5.Регистрация величины — отображение измеряемой величины в цифровой или графической форме на твердом носителе — бумаге.

6.Тепловычислитель — устройство, обеспечивающее расчет количества теплоты на основе входной информации о массе, температуре и давлении теплоносителя.

7.Теплосчетчик — прибор или комплект приборов (средство измерения), предназначенные для определения количества теплоты, измерения массы и параметров теплоносителя.

8.Узел учета — комплект приборов и устройств, обеспечивающий учет тепловой энергии, массы (объема) теплоносителя, а также контроль и регистрацию его параметров.

Рис. 1. Схема учета тепловой энергии и теплоносителя

2. Принципиальная схема размещения точек измерения у потребителя для открытых водных систем теплоснабжения: / — рекуперативный теплообменник; 2 — отопительный прибор; 3 — насос; 4 — датчик расхода; 5 — датчик температуры; 6 — отбор давления

Теплосчетчики должны обеспечивать измерение количества теплоты в измерительном канале в соответствии с уравнениями измерений, регламентированными нормативными документами, утвержденными в установленном порядке. Под количеством теплоты (тепловой энергии) в понимают изменение внутренней энергии теплоносителя, происходящее при теплопередаче в теплообменных контурах (без массопереноса и совершения работы).

Схема, приведенная на рис. 2, применяется для открытых водяных систем теплопотребления. В целом в открытых и закрытых водяных системах

теплопотребления с помощью приборов подлежат определению:

•время работы приборов узла учета (7);

•масса (объем) теплоносителя, полученного по подающему трубопроводу (G,) и возвращенного по обратному трубопроводу (G);

•масса теплоносителя, полученного по подающему трубопроводу и возвращенного по обратному трубопроводу за каждый час;

•среднечасовая и среднесуточная температура теплоносителя в подающем и обратном трубопроводах узла учета t и /

Вслучае использования теплоносителя для подпитки независимых систем теплопотребления должна определяться масса теплоносителя, использованного на подпитку этой системы. Помимо этого в открытых системах теплопотребления должны определяться:

•масса теплоносителя, израсходованного на открытый водоразбор в системах горячего водоснабжения G ;

•среднечасовое давление теплоносителя в подающем и обратном трубопроводах узла учета Р1 и Р2

Впаровых системах теплопотребления на узле учета тепловой энергии и теплоносителя с помощью приборов определяются:

•время работы приборов узла учета Т;

•полученная тепловая энергия Q;

•масса (объем) полученного пара D;

•масса (объем) возвращенного конденсата G ;

•масса получаемого пара за каждый час;

•среднечасовое значение температуры и давления пара tt и Р} а также температуры возвращаемого конденсата.

Вслучае использования конденсата для подпитки независимых

систем теплопотребления должна определяться масса конденсата Gn, использованного на подпитку этой системы также, как и в водяных системах теплопотребления.

Вотличие от водяных систем теплопотребления Правилами не предусмотрена градация источников теплоты в зависимости от суммарной подключенной тепловой нагрузки. Принципиальная схема размещения точек измерения количества тепловой энергии, массы теплоносителя и параметров на источнике теплоты для водяных систем теплоснабжения приведена на рис. 8.18, для паровых систем теплоснабжения — на рис. 3.

На каждом узле учета тепловой энергии источника теплоты в водяных системах теплоснабжения с помощью приборов учета определяются:

•время работы приборов узла учета тепловой энергии Т;

•отпущенная тепловая энергия;

•масса теплоносителя, отпущенного и полученного источником теплоты соответственно по подающему и обратному трубопроводам;

• масса теплоносителя, расходуемого на подпитку системы теплоснабжения;

"тепловая энергия, отпущенная за каждый час;

Рис. 3. Принципиальная схема размещения точек измерения у потребителя для паровых систем теплопотребления: 1 — бак; 2 — конденсатоотводчик; остальные обозначения см. рис. 2

Измерительный канал ИС рассматривается как последовательное соединение каналов компонентов или (и) измерительных каналов комплексных компонентов, выполняющих законченную функцию от восприятия измеряемой величины до получения результата ее измерения, выражаемого числом или соответствующим ему кодом. Измерительные каналы системы могут быть простыми и сложными. В простом канале реализуется выполнение прямых измерений. Сложный канал представляет

собой совокупность простых измерительных каналов, реализующих косвенные, совокупные или совместные измерения. Измерительные каналы могут входить в состав как автономных измерительных систем, так и более сложных систем: контроля, диагностики, распознавания образов, других информационно-измерительных систем, а также автоматических систем управления технологическими процессами. В таких сложных системах целесообразно объединять измерительные каналы в отдельную измерительную подсистему с четко выраженными границами как со стороны входа (мест подсоединений к объекту измерений), так и со стороны выхода (мест получения результатов измерений).

Как следует из определения измерительной системы, компонентами измерительной системы являются технические устройства, входящие в состав измерительной системы и реализующие одну из функций процесса измерений: измерительную, вычислительную и связующую. Таким образом, измерительным компонентом ИС являются средства измерения: измерительный прибор, измерительный преобразователь, мера, измерительный коммутатор. К измерительным компонентам относятся также аналоговые "вычислительные" устройства, в которых происходит преобразование одних физических величин в другие. Связующими компонентами измерительной системы являются технические устройства, либо часть окружающей среды, предназначенные или используемые для передачи с минимально возможными искажениями сигналов, несущих информацию об измеряемой величине от одного компонента измерительной системы к другому. Вычислительными компонентами измерительной системы является цифровое измерительное устройство (или его часть) совместно с программным обеспечением, выполняющие функцию обработки (вычисления) результатов наблюдений (или прямых измерений) для получения результатов прямых (или косвенных, совместных, совокупных) измерений, выражаемых числом или соответствующим ему кодом.

Конструктивно объединенная или территориально локализованная совокупность, компонентов, представляющая собой часть измерительной системы и выполняющая несколько из общего числа измерительных преобразований, предусматриваемых процессом измерений, образует измерительный комплекс. К разряду измерительных комплексов относятся информационно-измерительные системы.

•масса теплоносителя, отпущенного источником теплоты по подающему трубопроводу и полученного по обратному трубопроводу за каждый час;

•масса теплоносителя, расходуемого на подпитку систем теплоснабжения за каждый час;

•среднечасовая и среднесуточная температура теплоносителя в подающем, обратном трубопроводах и трубопроводе холодной воды, используемой для подпитки;

•среднечасовое давление теплоносителя в подающем, обратном трубопроводах и трубопроводе холодной воды, используемой для подпитки.

На каждом узле учета источника тепловой энергии с помощью

приборов определяются:

•время работы приборов узла учета Т;

•отпущенная тепловая энергия Q;

•массы (объемы пара и возвращенного источнику теплоты конденсата)

D и GK;

•тепловая энергия, отпущенная за каждый час;

•массы (объемы) отпущенного пара и возвращенного источнику теплоты конденсата за каждый час;

•среднечасовые значения температуры пара, конденсата и холодной воды, используемой для подпитки;

•среднечасовые значения давления пара, конденсата и холодной воды, используемой для подпитки.

Следует отметить, что среднечасовые значения параметров (температуры и давления) сред определяются на основании показаний приборов, регистрирующих значения этих параметров.