Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по общей энергетике.doc
Скачиваний:
220
Добавлен:
10.06.2015
Размер:
2.09 Mб
Скачать

4.4. Тепловой баланс парового котла.

Тепловой баланс котла, как и любого теплотехнического агрегата, характери­зуется равенством между количествами подведенной (располагаемой) и расходу­емой теплоты: Qприх = Qрасх Обычно теп­ловой баланс составляют на единицу ко­личества сжигаемого топлива 1 кг твер­дого или жидкого, либо 1 м3 газообраз­ного топлива, взятый при нормальных условиях. С учетом этого и пренебрегая физической теплотой топлива и холодно­го воздуха, можно считать

Qприх~Qi (18.4)

Здесь Qrt — низшая теплота сгорания единицы топлива в рабочем состоянии.

Часть теплоты, затрачиваемая на по­догрев, испарение воды и перегрев пара, составляет использованную теплоту Qiостальное — потери. В итоге уравнение теплового баланса котла будет иметь вид

(18.5)

где Q2, Q3, Q4, Q5 — потери теплоты со­ответственно с уходящими газами, от хи­мической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газо­ходов.

В процентах от располагаемой тепло­ты Q[ тепловой баланс может быть за­писан так (см. § 17.1):

100 = q1+q2+q3+q4+Q5 (18.6)

Тепловой баланс парового котла с обозначением основных составляющих приходной и расходной частей приведен на схеме рис. 18.12. Замкнутый контур на рисунке представляет теплоту горячего воздуха Qr в, забираемую от продуктов сгорания при относительно низкой темпе­ратуре и передаваемую в топку.

Доля теплоты, использованной в ко­тельном агрегате (переданной воде и па­ру) , есть коэффициент полезно­го действия котла брутто т)к (так называют КПД, подсчитанный без учета затрат энергии на собственные нужды).

Таким образом,

(18.7)

или

(18.8)

Теплота Q1 воспринятая водой и па­ром в котле, может быть определена из уравнения

(18.9)

Здесь hne и hnb — энтальпии перегретого пара и питательной воды.

Рассматривая выражение (18.9) со­вместно с (18.7), нетрудно получить фор­мулу для расчета расхода топлива, В:

(18.10)

Величина г|к взята здесь в долях единицы.

По формуле (18.7) КПД котла под­считывают по данным балансовых испы­таний (прямой баланс), позволяющих точно измерить расход топлива в устано­вившемся (стационарном) режиме рабо­ты. Поэтому испытанию котла должна предшествовать длительная его работа с постоянной нагрузкой, при которой и проводится испытание. Формула (18.8), называемая формулой обратного баланса, используется в расчетах про­ектируемого котла. При этом каждая из составляющих q, принимается по реко­мендациям [16], разработанным на ос­нове многократных испытаний Котлов в условиях, аналогичных проектным. Эта формула используется также в случаях, когда не представляется возможным точ­но замерить расход топлива. Современ­ные котлы являются довольно совершен­ными агрегатами; их КПД превышает 90%.

5. Паровые и газовые турбины.

5.1. Действие рабочего тела на лопатки

Турбомашина (турбина) является двигателем, в котором теплота рабоче­го тела — пара или газа — последова­тельно преобразуется в кинетическую энергию струи, а затем в механическую работу.

Вытекающий из сопла поток рабоче­го тела, обладающий значительной кине­тической энергией, действует на лопатки с силой, которая зависит от формы их поверхности (рис. 20.1).

Расчеты по уравнению количества движения показывают, что при прочих равных условиях, например при задан­ной скорости истечения со и расходе ра­бочего тела /п, с наибольшей силой поток будет воздействовать на лопатку, форма которой обеспечивает его поворот на 180° (рис. 20.1, б). Если позволить ло­паткам перемещаться под действием струи, то движение газа по схеме (рис. 20.1, б) обеспечит при одинаковой во всех схемах скорости и наибольшую мощность, равную произведению дей­ствующей на лопатку силы на скорость ее перемещения. Отсюда, в частности, следует, что для получения максималь­ной работы поток должен не ударяться о поверхность, а обтекать ее плавно, без завихрений.

Но использовать наиболее выгодный(с точки зрения получения максимальной мощности) профиль лопаток для тепло­вого двигателя непрерывного действия, например турбомашины, невозможно, так как практически не удается при вра­щательном движении диска с лопатками подать на них газ в направлении, со­впадающем с плоскостью вращения. По­этому в турбинах струя газа, вытекаю­щего из неподвижного сопла, подается на лопатки, изогнутые под некоторым углом к плоскости вращения (рис. 20.1, в), причем по конструктивным соображениям этот угол не удается сде­лать меньше 11 —16° (в ряде случаев его принимают равным 20—30°).

Рассмотренный принцип действия по­тока на поверхности различных форм называется активным, в отличие от реактивного, когда сила создается за счет реакции струи, вытекающей из сопла (рис. 20.1, г). Реактивная сила, приложенная к цилиндру, направлена согласно третьему закону Ньютона в сто­рону, противоположную истечению га­зов. С такой же силой действует струя на поверхность (активный принцип, рис. 20.1, а), но при реактивном способе конструкция теплового двигателя полу­чается более рациональной, так как со­вмещаются сопловой и двигательный ап­параты.