diskretmath1
.rtf
##theme 6
##score 3
##type 1
##time 0:00:00
Таблица
расстояний графа
с
условными радиусами графа относительно
всех вершин имеет вид…
-
|
1) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
3 |
1 |
3 |
|
|
1 |
2 |
3 |
0 |
4 |
4 |
|
|
3 |
2 |
1 |
4 |
0 |
4 |
|
+2) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
1 |
2 |
1 |
0 |
2 |
2 |
|
|
3 |
2 |
3 |
2 |
0 |
3 |
|
-3) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
1 |
2 |
|
|
2 |
0 |
1 |
1 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
3 |
3 |
|
|
1 |
1 |
1 |
0 |
2 |
2 |
|
|
1 |
2 |
3 |
2 |
0 |
3 |
|
-4) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
1 |
3 |
|
|
1 |
0 |
1 |
1 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
3 |
3 |
|
|
1 |
1 |
1 |
0 |
2 |
2 |
|
|
1 |
2 |
3 |
2 |
0 |
4 |
|
-5) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
2 |
1 |
0 |
2 |
2 |
|
|
3 |
2 |
3 |
2 |
0 |
3 |
##theme 6
##score 3
##type 1
##time 0:00:00
Таблица
расстояний графа
с
условными радиусами графа относительно
всех вершин имеет вид…
|
-1) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
3 |
1 |
3 |
|
|
1 |
2 |
3 |
0 |
4 |
4 |
|
|
3 |
2 |
1 |
4 |
0 |
4 |
|
+2) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
1 |
2 |
1 |
0 |
1 |
2 |
|
|
2 |
2 |
1 |
1 |
0 |
2 |
|
-3) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
1 |
2 |
|
|
2 |
0 |
1 |
1 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
3 |
3 |
|
|
1 |
1 |
1 |
0 |
2 |
2 |
|
|
1 |
2 |
3 |
2 |
0 |
3 |
-
|
4) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
1 |
3 |
|
|
1 |
0 |
1 |
1 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
3 |
3 |
|
|
1 |
1 |
1 |
0 |
2 |
2 |
|
|
1 |
2 |
3 |
2 |
0 |
4 |
-
|
5) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
1 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
2 |
2 |
1 |
0 |
1 |
2 |
|
|
2 |
2 |
1 |
1 |
0 |
2 |
##theme 6
##score 3
##type 1
##time 0:00:00
Таблица
расстояний графа
с
условными радиусами графа относительно
всех вершин имеет вид…
|
+1) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
2 |
1 |
0 |
1 |
3 |
|
|
3 |
2 |
1 |
1 |
0 |
3 |
|
-2) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
3 |
1 |
0 |
1 |
3 |
|
|
3 |
2 |
1 |
1 |
0 |
3 |
|
-3) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3 |
3 |
|
|
1 |
0 |
1 |
3 |
2 |
2 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
2 |
1 |
0 |
1 |
3 |
|
|
3 |
2 |
1 |
1 |
0 |
3 |
|
-4) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
1 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
2 |
1 |
0 |
1 |
3 |
|
|
3 |
2 |
1 |
1 |
0 |
3 |
|
-5) |
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
3 |
3 |
|
|
1 |
0 |
1 |
2 |
2 |
1 |
|
|
2 |
1 |
0 |
1 |
1 |
2 |
|
|
3 |
2 |
1 |
0 |
1 |
3 |
|
|
3 |
2 |
1 |
2 |
0 |
3 |
