Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полисахариды / Гиалуроновая кислота.doc
Скачиваний:
326
Добавлен:
09.06.2015
Размер:
355.84 Кб
Скачать

Гиалуроновая кислота Распространение в природе

Гиалуроновая кислота– природный полисахарид животного происхождения. Широко распространена в природе, содержится в основном веществе многих видов соединительной и нервной ткани (в коже, связках, пуповине, сердечных клапанах, стекловидном теле глаза, роговице и др.) ибиологических жидкостей (слюне,синовиальной исуставной жидкости, и др.). В соединительной ткани дермы гиалуроновая кислота расположена между волокнами коллагена и эластина, в клетках рогового слоя – в корнеоцитах.

Таким образом, гиалуроновая кислота является одним из основных компонентов внеклеточного матрикса. Принимает значительное участие впролиферациии миграции клеток. Продуцируется некоторымибактериями(например,Streptococcus).

Количество гиалуроновой кислоты в различных источниках может составлять до 5% сухой массы ткани. В теле человека весом 70 кг в среднем содержится ~15 г гиалуроновой кислоты.

Получение

В промышленности гиалуроновую кислоту получают двумя способами: физико-химическим и биотехнологическим.

Физико-химический способ. По этому способу гиалуроновую кислоту получают, в основном, из петушиных гребней, человеческих пуповин и глаз крупного рогатого скота. Технологическая схема получения гиалуроновой кислоты из вышеназванной биомассы включает следующие стадии:ферментативное расщеплениесоединительной тканис выделением гиалуроновой кислоты илиэкстрагированиегиалуроновой кислоты из биомассы разбавленными растворами щелочи или кислоты, последующее специфическое фракционирование выделенного продукта для удаления белковых и липидных составляющих, несколько этапов очистки, осаждение и высушивание.

В последнее время гиалуроновую кислоту все чаще получают более выгодным с экономической точки зрения биотехнологическим путем из растительного сырья (пшеничный субстрат) с использованием бактериальных культур (Streptococcus zooepidermicusилиStreptococcus equi). Этапы получения гиалуроновой кислоты по биотехнологии следующие: строго контролируемыйбиосинтезгиалуроновой кислотыбактериальными клетками(бактерии размножаются и помещаются в бродильный чан, где они синтезируют гиалуроновую кислоту в специальных условиях); выделение наработанной гиалуроновой кислоты из бактерий и ее дальнейшая очистка; осаждение и высушивание. Все процессы биотехнологического получения гиалуроновой кислоты проводят в условиях постоянного бактериологического и реологического контроля, обеспечивающего высокое качество получаемого продукта и, самое главное, заданную молекулярную массу гиалуроновой кислоты.

Химическое строение и молекулярная структура

Гиалуроновая кислота– несульфированныйгликозаминогликан. В природных условиях гиалуроновая кислота синтезируется классом встроенныхмембранных белков, называемыхгиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Считается, что эти ферменты соединяют молекулыглюкуроновой кислотыиN-ацетилглюкозаминав строго чередующемся порядке.

Структурная формула фрагмента макромолекулы гиалуроновой кислоты приведена на рис.1. Макромолекулярные цепи построены из чередующихся звеньев остатков β-D-глюкуроновой кислотыиβ-N-ацетилглюкозамина, связанныхβ-(1→4)-и β-(1→3)-гликозидными связями.

Рис.1.Структурная формула макромолекулы гиалуроновой кислоты.

Атомы водорода СООН-групп некоторых элементарных звеньев β-D-глюкуроновой кислоты могут быть замещеныNaилиK. Такие полисахариды называют натриевой или калиевой солью гиалуроновой кислоты (гиалуронат натрияилигиалуронат калия).

Элементарной повторяющейся единицей макромолекулы гиалуроновой кислоты является дисахаридный фрагмент. В качестве примера на рис.2 представлена элементарная единица макромолекулы натриевой соли гиалуроновой кислоты

Рис.2.Элементарная единица макромолекулыNa-соли гиалуроновой кислоты.

Наиболее энергетически выгодной конформацией элементарного звена молекулы гиалуроновой кислоты является конформация кресла С1 (рис.3).

Рис.3.Конформация повторяющегося дисахаридного звена гиалуроновой кислоты.

Объёмные заместители пиранозногокольца находятся в стерически выгодныхэкваториальных положениях, а меньшие по размеру атомы водорода занимают менее выгодныеаксиальныепозиции.

Благодаря присутствию β-(1→3)-гликозидных cвязeй макромолекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали (рис.4).

Рис.4.Виток спиральной конформации макромолекулы гиалуроновой кислоты.

На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Ca2+.