
- •1. Определение, особенности, история дисциплины «Телемеханика»
- •1.2. Краткая история развития телемеханики
- •2.Объекты систем телемеханики их классификация по различным критериям: по характеру протекания в них процессов, по топологии.
- •3. Телемеханические функции телеизмерения и телесигнализации.
- •4. Телемеханическая функция телеуправления и Телемеханическая функция телерегулирования.
- •5. Сообщение и информация. Физические среды передачи информации.
- •6. Основные понятия о системах телемеханики. Местное, дистанционное и телемеханическое управление.
- •7.Организация многоканальной связи. Временное разделение сигналов
- •8. Организация многоканальной связи. Частотное разделение сигналов.
- •9. Организация многоканальной связи. Частотно-временное разделение
- •10. Методы кодирования информации. Основные понятия: кодирование, декодирование, код и его основные характеристики.
- •11. Классификация кодов. Основные способы представления кодов.
- •11. Первичные коды
- •Единичный позиционный код
- •Единично-десятичный код
- •Примеры единично-десятичного кода
- •13.Двоичный нормальный (натуральн ый) код
- •Двоично-десятичные коды
- •Примеры двоично-десятичного кода с весовыми коэффициентами 8-4-2-1
- •14. Код Грея
- •15. Корректирующие коды. Принципы обнаружения и исправления ошибок
- •16. Коды с обнаружением ошибок
- •4.6.1. Коды, построенные путём уменьшения числа используемых комбинаций
- •4.6.1.1. Код с постоянным весом
- •Пятиразрядный код с двумя единицами и пример семиразрядного кода с тремя единицами
- •4.6.1.2. Распределительный код
- •17. Код с проверкой на чётность
- •Примеры построения кода с проверкой на чётность
- •4.6.2.2. Код с числом единиц, кратным трём
- •Примеры кода с числом единиц, кратным трём
- •18. Код с удвоением элементов (корреляционный код)
- •19. Инверсный код
- •Примеры инверсного кода
- •20. Коды Хэмминга
- •Число контрольных символов в зависимости от числа информационных разрядов для исправления одной ошибки
- •Пример предварительной таблицы кода Хэмминга
- •Проверочная таблица кода Хэмминга
- •Проверочная таблица кода Хэмминга, заполненная информационными символами
- •Проверочная таблица принятой кодовой комбинации примера 4.2
- •21. Коды с обнаружением и исправлением ошибок. Циклический код: математические основы. Циклические коды
- •Математические основы циклических кодов.
- •Принципы построения циклических кодов.
- •Получение остатков для строк единичной транспонированной матрицы
- •Укороченные циклические коды.
- •Образующая матрица укороченного (12, 4) псевдоциклического кода
- •24. Модуляция сигналов. Определение, достоинства. Типы модуляции.
- •25. Амплитудной модуляцией
- •Амплитудная модуляция с двумя боковыми полосами.
- •Амплитудная модуляция с одной боковой полосой.
- •Амплитудная манипуляция.
- •Спектры импульсных сигналов
- •26. Частотная модуляция: определение, спектр частот.
- •Частотная манипуляция.
- •Реализация частотной модуляции.
- •5.4. Двукратная непрерывная модуляция
- •27. Импульсные виды модуляции (дельта, лямбда-дальта, разностно-дискретная модуляция).
- •Лямбда-дельта-модуляция
- •Разностно-дискретная модуляция (рдм)
- •28. Спектры импульсных сигналов.
- •29. Помехоустойчивость передачи сигналов. Помехи и их характеристики. Искажения сигналов под действием помех.
- •Искажение сигналов под действием помех
- •30. Теория потенциальной помехоустойчивости в. А. Котельникова.
- •31. Помехоустойчивость реальных приёмников сигналов: приёмник видеоимпульсов, приёмник радиоимпульсов.
- •32. Помехоустойчивость передачи кодовых комбинаций при независимых ошибках.
- •33. Методы повышения достоверности передачи сообщений: общая характеристика, передача с повторением.
- •Передача с повторением
- •1 0 0 0 1 0 0
- •1 1 1 1 1 0 1
- •1 0 1 0 0 0 1
- •1 0 1 0 1 0 1
- •34. Методы повышения достоверности передачи сообщений: использование обратной связи.
- •35. Организация каналов связи для передачи данных: определение канала связи, его структура, типы и виды линий связи.
- •Типы и виды линии связи
- •36. Организация каналов связи для передачи данных. Проводные линии связи, их характеристики: первичные и вторичные параметры, режим согласованной передачи.
- •37. Каналы телемеханики по высоковольтным линиям электропередач
- •38. Каналы связи по радио
- •Частотные диапазоны для передачи информации
- •39. Методы синфазирования распределителей пу и кп в системах с временным разделением сигналов.
- •40. Методы синхронизации распределителей пу и кп в системах с временным разделением сигналов. Синхронизация в системах с временным разделением сигналов
- •42. Цифровые системы телеизмерений. Структура устройства кп. Цифровые системы телеизмерений
- •43. Цифровые системы телеизмерений. Структура устройства пункта управления.
29. Помехоустойчивость передачи сигналов. Помехи и их характеристики. Искажения сигналов под действием помех.
Помехи – случайные воздействия, искажающие передаваемый сигнал. Если помеха не случайная, а регулярная, например, передача радиостанции, то от нее можно избавиться с помощью соответствующих полосовых фильтров.
Типы помех. Воздействие помехи на сигнал может быть двояким. Если помеха ξ(t) складывается с сигналом s(t) и на вход приемника поступает их сумма
x(t)=ξ(t) + s(t), (7.1)
то такую помеху называют аддитивной.
Если результирующий сигнал равен произведению помехи и передаваемого сигнала
x(t)=ξ(t)*s(t), (7.2)
то эту помеху называют мультипликативной.
Мультипликативные помехи вызываются рядом причин, основными из которых являются изменение характеристик линий связи, коэффициентов усиления схем при колебаниях напряжений питания, замирания сигналов в радиосвязи.
Поскольку подавляющее большинство сообщений в промышленной телемеханике передается по проводным линиям связи, которые являются линейными электрическими цепями, при воздействии помех на эти цепи мультипликативные помехи не возникают. Воздействие помех на передаваемый сигнал имеет аддитивный характер. Поэтому в дальнейшем будем рассматривать только аддитивные помехи. Их классификация представлена на рис. 7.1 [8].
По форме аддитивные помехи можно разделить на сосредоточенные во времени или импульсные (рис. 7.2, а), флуктуационные или гладкие (рис. 7.2, б) и гармонические или сосредоточенные по частоте (рис. 7.2, в).
Рис. 7.1. Классификация аддитивных помех и их источников
Рис. 7.2. Типы аддитивных помех
Импульсные помехи (рис. 7.2, а) следуют друг за другом относительно редко, т.е. через такие промежутки времени, при которых нестационарные процессы в приемнике от одной импульсной помехи успевают закончиться до появления следующей импульсной помехи. В общем случае импульсные помехи представляют собой последовательность импульсов со случайными амплитудой, длительностью и моментами появления отдельных импульсов.
Флуктуационные или гладкие помехи характеризуются тем, что в них отсутствуют большие резкие колебания. Амплитуда флуктуационных помех на выходе приемного устройства пропорциональна корню квадратному полосы пропускания устройств, а мощность – полосе пропускания. При импульсных помехах мощность и амплитуда помехи пропорциональны полосе пропускания.
Таким образом, при уменьшении полосы пропускания приёмного устройства в четыре раза эффективное напряжение флуктуационных помех уменьшается в два раза, а импульсных – в четыре раза. При этом мощность флуктуационных и импульсных помех уменьшается одинаково, т.е. в четыре раза.
Это показывает, что на характер помех на выходе приемного устройства существенное влияние оказывает полоса пропускания приемника. При одних и тех же помехах в линии связи на выходе узкополосного приемника помехи могут иметь флуктуационный характер, а широкополосного – импульсный.
Энергетический спектр помехи характеризует распределение ее по мощности в диапазоне частот. Так, помехи типа «белый шум» обладают равномерным спектром, спектральная плотность которого не зависит от частоты в пределах полосы частот канала. При равномерном энергетическом спектре вводят понятие удельной мощности помехи, отнесенной к полосе в 1 Гц.
Источники помех. Источниками помех являются внешние воздействия и внутренние шумы, возникающие в цепях и аппаратуре (см. рис. 7.1).
К внутренним шумам относятся тепловые шумы, возникающие из-за беспорядочного движения свободных электронов в проводах и резисторах и шумы, обусловленные дробовым эффектом в электронных лампах и полупроводниковых приборах. В результате дробового эффекта ток не является постоянным и флуктуирует относительно среднего значения.
Наибольшее влияние на канал связи оказывают внешние помехи, главнейшими из которых являются промышленные (искусственные) и атмосферные (естественные) помехи.
Промышленные помехисоздаются различными устройствами: электрическим транспортом, электросваркой, системами зажигания автомобилей, медицинским электрооборудованием и др. Основной причиной этих помех является искрообразование, связанное с резким прерыванием тока в электрических цепях в процессе их коммутации. Помехи создаются также линиями электропередачи, которые при отсутствии экранирования являются своего рода антеннами.
Атмосферные помехиобусловлены перемещением электрических зарядов в атмосфере. Молнии создают токовые разряды в десятки тысяч ампер, и помехи от них носят импульсный характер. Однако если количество грозовых разрядов в единицу времени велико и приемное устройство реагирует на достаточно дальние разряды, помехи на выходе узкополосного приемника могут иметь флуктуационный характер.
Основная энергия промышленных и атмосферных помех заключена в низкочастотном диапазоне волн. С увеличением частоты уровень этих помех падает.
Следует отметить еще один тип помех, которые имеются только в многоканальных устройствах телемеханики – так называемые перекрестные помехи. При изменении сигналов в соседних каналах многоканальной системы с частотным разделением сигналов могут появляться в виде помех сигналы, вызванные переходными искажениями. Причиной их появления служат реальные характеристики полосовых фильтров, которые вследствие неполного подавления соседних частот или дрейфов характеристик пропускают колебания, которые должны подавлять. Если число каналов достаточно велико, а изменения сигналов в различных каналах независимы, то перекрестные помехи будут по своему характеру приближаться к флуктуационным. Для уменьшения таких перекрёстных помех вводятся защитные частотные интервалы.