
- •Лейбовский м.А.
- •Шкала отношений
- •Тема 2.
- •Программные продукты (ппп) для обработки
- •Психолого-педагогической и социологической
- •Информации.
- •Тема 3.
- •Статистический анализ экспериментальных данных.
- •Методы первичной обработки результатов
- •Эксперимента
- •Выборочное среднее
- •Дисперсия
- •Выборочное отклонение
- •Медиана
- •Интервал
- •Тема 4. Основные понятия, используемые в математической обработке психологических данных
- •1. Распределение признака. Параметры распределения
- •Тема 5. Статистические гипотезы
- •Направленные гипотезы
- •3. Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •4. Уровни статистической значимости
- •Правило отклонения Hо и принятия h1
- •5. Мощность критериев
- •6. Классификация задач и методов их решения
- •Принятие решения о задаче и методе обработки на стадии, когда данные уже получены
- •Алгоритм
- •Тема 6. Выявление различий в уровне исследуемого признака
- •1. Обоснование задачи сопоставления и сравнения
- •Алгоритм Подсчет критерия q Розенбаума
- •Алгоритм Подсчет критерия н Крускала-Уоллиса
- •Тема 7. Оценка достоверности сдвига в значениях исследуемого признака
- •1. Обоснование задачи исследований изменений
- •4. Критерий χ2r Фридмана
- •Алгоритм Подсчет критерия χ2r Фридмана
- •Алгоритм принятия решения о выборе критерия оценки изменений
- •Тема 8. Корреляционный анализ
- •1) «Время просмотра телепередач с насилием»;
- •Понятие корреляции
- •Коэффициент корреляции rxy пирсона
- •Ранговый коэффициент корреляции спирмена
- •Коэффициент корреляции «τ» (тау) кендалла
- •Частная корреляция
- •Тема 9. Факторный и кластерный анализ. Факторный анализ.
- •Кластерный анализ
- •Перечень вопросов к зачету:
Тема 3.
Статистический анализ экспериментальных данных.
Методы первичной обработки результатов
Эксперимента
Общее представление о методах статистического анализа экспериментальных данных, назначение этих методов. Деление статистических методов на первичные и вторичные. Основные показатели, получаемые в результате первичной обработки экспериментальных данных. Вычисление средней арифметической. Определение дисперсии. Установление примерного распределения данных. Определение моды. Характеристика нормального распределения. Вычисление интервалов.
Методы вторичной статистической обработки результатов эксперимента.
Способы вторичной статистической обработки результатов исследования. Регрессионное исчисление. Сравнение средних величин разных выборок. Сравнение частотных распределений данных. Сравнение дисперсий двух выборок. Установление корреляционных зависимостей и их интерпретация. Понятие о факторном анализе как методе статистической обработки.
Способы табличного и графического представления результатов эксперимента.
Виды таблиц и их построение. Графическое представление экспериментальных данных. Гистограммы и их применение на практике.
Методами статистической обработки результатов эксперимента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе эксперимента, можно обобщать, приводить в систему, выявляя скрытые в них закономерности.
Речь идет о таких закономерностях статистического характера, которые существуют между изучаемыми в эксперименте переменными величинами.
1. Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные математические статистики, характеризующие выборочное распределение данных, например
выборочное среднее,
выборочная дисперсия,
мода,
медиана и ряд других.
2. Иные методы математической статистики, например
дисперсионный анализ,
регрессионный анализ, позволяют судить о динамике изменения отдельных статистик выборки.
3. С помощью третьей группы методов, скажем,
корреляционного анализа,
факторного анализа,
методов сравнения выборочных данных, можно достоверно судить о статистических связях,
существующих между переменными величинами, которые исследуют в данном эксперименте.
Все методы математико-статистического анализа условно делятся на первичные и вторичные (определения не достаточно строгие с точки зрения теории вероятностей и математической статистики как сложившихся областей современной математики. Это сделано для лучшего понимания студентами, не вполне владеющими математическим аппаратом).
Первичными называют методы, с помощью которых можно получить показатели, непосредственно отражающие результаты производимых в эксперименте измерений.
Соответственно под первичными статистическими показателями имеются в виду те, которые применяются в самих психодиагностических методиках и являются итогом начальной статистической обработки результатов психодиагностики.
Вторичными называются методы статистической обработки, с помощью которых на базе первичных данных выявляют скрытые в них статистические закономерности.
К первичным методам статистической обработки относят, например,
определение выборочной средней величины,
выборочной дисперсии,
выборочной моды и
выборочной медианы.
В число вторичных методов обычно включают
корреляционный анализ,
регрессионный анализ,
методы сравнения первичных статистик у двух или нескольких выборок.
Рассмотрим методы вычисления элементарных математических статистик, начав с выборочного среднего.